/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2016 Tom Theuns (tom.theuns@durham.ac.uk) * Stefan Arridge (stefan.arridge@durham.ac.uk) * Matthieu Schaller (schaller@strw.leidenuniv.nl) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_POTENTIAL_ISOTHERMAL_H #define SWIFT_POTENTIAL_ISOTHERMAL_H /* Config parameters. */ #include /* Some standard headers. */ #include /* Local includes. */ #include "error.h" #include "gravity.h" #include "parser.h" #include "part.h" #include "physical_constants.h" #include "space.h" #include "units.h" /** * @brief External Potential Properties - Isothermal sphere case with * central softening */ struct external_potential { /*! Position of the centre of potential */ double x[3]; /*! Rotation velocity */ double vrot; /*! Square of vrot, the circular velocity which defines the isothermal * potential devided by Newton's constant */ double vrot2_over_G; /*! Square of the softening length. Acceleration tends to zero within this * distance from the origin */ double epsilon2; /*! Time-step condition pre-factor */ double timestep_mult; }; /** * @brief Computes the time-step due to the acceleration from an isothermal * potential. * * @param time The current time. * @param potential The #external_potential used in the run. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_timestep( double time, const struct external_potential* restrict potential, const struct phys_const* restrict phys_const, const struct gpart* restrict g) { const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; const float r2_plus_epsilon2_inv = 1.f / (dx * dx + dy * dy + dz * dz + potential->epsilon2); const float drdv = dx * (g->v_full[0]) + dy * (g->v_full[1]) + dz * (g->v_full[2]); const double vrot = potential->vrot; const float dota_x = vrot * vrot * r2_plus_epsilon2_inv * (g->v_full[0] - 2.f * drdv * dx * r2_plus_epsilon2_inv); const float dota_y = vrot * vrot * r2_plus_epsilon2_inv * (g->v_full[1] - 2.f * drdv * dy * r2_plus_epsilon2_inv); const float dota_z = vrot * vrot * r2_plus_epsilon2_inv * (g->v_full[2] - 2.f * drdv * dz * r2_plus_epsilon2_inv); const float dota_2 = dota_x * dota_x + dota_y * dota_y + dota_z * dota_z; const float a_2 = g->a_grav[0] * g->a_grav[0] + g->a_grav[1] * g->a_grav[1] + g->a_grav[2] * g->a_grav[2]; return potential->timestep_mult * sqrtf(a_2 / dota_2); } /**c * @brief Computes the gravitational acceleration from an isothermal potential. * * Note that the accelerations are multiplied by Newton's G constant * later on. * * a_x = -(v_rot^2 / G) * x / (r^2 + epsilon^2) * a_y = -(v_rot^2 / G) * y / (r^2 + epsilon^2) * a_z = -(v_rot^2 / G) * z / (r^2 + epsilon^2) * * @param time The current time. * @param potential The #external_potential used in the run. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static void external_gravity_acceleration( double time, const struct external_potential* potential, const struct phys_const* const phys_const, struct gpart* g) { const float G = phys_const->const_newton_G; const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; const float r2_plus_epsilon2 = dx * dx + dy * dy + dz * dz + potential->epsilon2; const float r2_plus_epsilon2_inv = 1.f / r2_plus_epsilon2; const float acc = -potential->vrot2_over_G * r2_plus_epsilon2_inv; const float pot = -potential->vrot2_over_G * logf(sqrtf(r2_plus_epsilon2)) / (4. * M_PI * G); g->a_grav[0] += acc * dx; g->a_grav[1] += acc * dy; g->a_grav[2] += acc * dz; gravity_add_comoving_potential(g, pot); } /** * @brief Computes the gravitational potential energy of a particle in an * isothermal potential. * * phi = 0.5 * vrot^2 * ln(r^2 + epsilon^2) * * @param time The current time (unused here). * @param potential The #external_potential used in the run. * @param phys_const Physical constants in internal units. * @param g Pointer to the particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_get_potential_energy( double time, const struct external_potential* potential, const struct phys_const* const phys_const, const struct gpart* g) { const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; return 0.5f * potential->vrot * potential->vrot * logf(dx * dx + dy * dy + dz * dz + potential->epsilon2); } /** * @brief Initialises the external potential properties in the internal system * of units. * * @param parameter_file The parsed parameter file * @param phys_const Physical constants in internal units * @param us The current internal system of units * @param potential The external potential properties to initialize */ static INLINE void potential_init_backend( struct swift_params* parameter_file, const struct phys_const* phys_const, const struct unit_system* us, const struct space* s, struct external_potential* potential) { /* Read in the position of the centre of potential */ parser_get_param_double_array(parameter_file, "IsothermalPotential:position", 3, potential->x); /* Is the position absolute or relative to the centre of the box? */ const int useabspos = parser_get_param_int(parameter_file, "IsothermalPotential:useabspos"); if (!useabspos) { potential->x[0] += s->dim[0] / 2.; potential->x[1] += s->dim[1] / 2.; potential->x[2] += s->dim[2] / 2.; } potential->vrot = parser_get_param_double(parameter_file, "IsothermalPotential:vrot"); potential->timestep_mult = parser_get_opt_param_float( parameter_file, "IsothermalPotential:timestep_mult", FLT_MAX); const double epsilon = parser_get_param_double(parameter_file, "IsothermalPotential:epsilon"); potential->vrot2_over_G = potential->vrot * potential->vrot / phys_const->const_newton_G; potential->epsilon2 = epsilon * epsilon; } /** * @brief Prints the properties of the external potential to stdout. * * @param potential The external potential properties. */ static INLINE void potential_print_backend( const struct external_potential* potential) { message( "External potential is 'Isothermal' with properties are (x,y,z) = (%e, " "%e, %e), vrot = %e " "timestep multiplier = %e, epsilon = %e", potential->x[0], potential->x[1], potential->x[2], potential->vrot, potential->timestep_mult, sqrtf(potential->epsilon2)); } #endif /* SWIFT_ISOTHERMAL_H */