/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 Tom Theuns (tom.theuns@durham.ac.uk)
* Stefan Arridge (stefan.arridge@durham.ac.uk)
* Matthieu Schaller (schaller@strw.leidenuniv.nl)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_POTENTIAL_ISOTHERMAL_H
#define SWIFT_POTENTIAL_ISOTHERMAL_H
/* Config parameters. */
#include
/* Some standard headers. */
#include
/* Local includes. */
#include "error.h"
#include "gravity.h"
#include "parser.h"
#include "part.h"
#include "physical_constants.h"
#include "space.h"
#include "units.h"
/**
* @brief External Potential Properties - Isothermal sphere case with
* central softening
*/
struct external_potential {
/*! Position of the centre of potential */
double x[3];
/*! Rotation velocity */
double vrot;
/*! Square of vrot, the circular velocity which defines the isothermal
* potential devided by Newton's constant */
double vrot2_over_G;
/*! Square of the softening length. Acceleration tends to zero within this
* distance from the origin */
double epsilon2;
/*! Time-step condition pre-factor */
double timestep_mult;
};
/**
* @brief Computes the time-step due to the acceleration from an isothermal
* potential.
*
* @param time The current time.
* @param potential The #external_potential used in the run.
* @param phys_const The physical constants in internal units.
* @param g Pointer to the g-particle data.
*/
__attribute__((always_inline)) INLINE static float external_gravity_timestep(
double time, const struct external_potential* restrict potential,
const struct phys_const* restrict phys_const,
const struct gpart* restrict g) {
const float dx = g->x[0] - potential->x[0];
const float dy = g->x[1] - potential->x[1];
const float dz = g->x[2] - potential->x[2];
const float r2_plus_epsilon2_inv =
1.f / (dx * dx + dy * dy + dz * dz + potential->epsilon2);
const float drdv =
dx * (g->v_full[0]) + dy * (g->v_full[1]) + dz * (g->v_full[2]);
const double vrot = potential->vrot;
const float dota_x = vrot * vrot * r2_plus_epsilon2_inv *
(g->v_full[0] - 2.f * drdv * dx * r2_plus_epsilon2_inv);
const float dota_y = vrot * vrot * r2_plus_epsilon2_inv *
(g->v_full[1] - 2.f * drdv * dy * r2_plus_epsilon2_inv);
const float dota_z = vrot * vrot * r2_plus_epsilon2_inv *
(g->v_full[2] - 2.f * drdv * dz * r2_plus_epsilon2_inv);
const float dota_2 = dota_x * dota_x + dota_y * dota_y + dota_z * dota_z;
const float a_2 = g->a_grav[0] * g->a_grav[0] + g->a_grav[1] * g->a_grav[1] +
g->a_grav[2] * g->a_grav[2];
return potential->timestep_mult * sqrtf(a_2 / dota_2);
}
/**c
* @brief Computes the gravitational acceleration from an isothermal potential.
*
* Note that the accelerations are multiplied by Newton's G constant
* later on.
*
* a_x = -(v_rot^2 / G) * x / (r^2 + epsilon^2)
* a_y = -(v_rot^2 / G) * y / (r^2 + epsilon^2)
* a_z = -(v_rot^2 / G) * z / (r^2 + epsilon^2)
*
* @param time The current time.
* @param potential The #external_potential used in the run.
* @param phys_const The physical constants in internal units.
* @param g Pointer to the g-particle data.
*/
__attribute__((always_inline)) INLINE static void external_gravity_acceleration(
double time, const struct external_potential* potential,
const struct phys_const* const phys_const, struct gpart* g) {
const float G = phys_const->const_newton_G;
const float dx = g->x[0] - potential->x[0];
const float dy = g->x[1] - potential->x[1];
const float dz = g->x[2] - potential->x[2];
const float r2_plus_epsilon2 =
dx * dx + dy * dy + dz * dz + potential->epsilon2;
const float r2_plus_epsilon2_inv = 1.f / r2_plus_epsilon2;
const float acc = -potential->vrot2_over_G * r2_plus_epsilon2_inv;
const float pot = -potential->vrot2_over_G * logf(sqrtf(r2_plus_epsilon2)) /
(4. * M_PI * G);
g->a_grav[0] += acc * dx;
g->a_grav[1] += acc * dy;
g->a_grav[2] += acc * dz;
gravity_add_comoving_potential(g, pot);
}
/**
* @brief Computes the gravitational potential energy of a particle in an
* isothermal potential.
*
* phi = 0.5 * vrot^2 * ln(r^2 + epsilon^2)
*
* @param time The current time (unused here).
* @param potential The #external_potential used in the run.
* @param phys_const Physical constants in internal units.
* @param g Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float
external_gravity_get_potential_energy(
double time, const struct external_potential* potential,
const struct phys_const* const phys_const, const struct gpart* g) {
const float dx = g->x[0] - potential->x[0];
const float dy = g->x[1] - potential->x[1];
const float dz = g->x[2] - potential->x[2];
return 0.5f * potential->vrot * potential->vrot *
logf(dx * dx + dy * dy + dz * dz + potential->epsilon2);
}
/**
* @brief Initialises the external potential properties in the internal system
* of units.
*
* @param parameter_file The parsed parameter file
* @param phys_const Physical constants in internal units
* @param us The current internal system of units
* @param potential The external potential properties to initialize
*/
static INLINE void potential_init_backend(
struct swift_params* parameter_file, const struct phys_const* phys_const,
const struct unit_system* us, const struct space* s,
struct external_potential* potential) {
/* Read in the position of the centre of potential */
parser_get_param_double_array(parameter_file, "IsothermalPotential:position",
3, potential->x);
/* Is the position absolute or relative to the centre of the box? */
const int useabspos =
parser_get_param_int(parameter_file, "IsothermalPotential:useabspos");
if (!useabspos) {
potential->x[0] += s->dim[0] / 2.;
potential->x[1] += s->dim[1] / 2.;
potential->x[2] += s->dim[2] / 2.;
}
potential->vrot =
parser_get_param_double(parameter_file, "IsothermalPotential:vrot");
potential->timestep_mult = parser_get_opt_param_float(
parameter_file, "IsothermalPotential:timestep_mult", FLT_MAX);
const double epsilon =
parser_get_param_double(parameter_file, "IsothermalPotential:epsilon");
potential->vrot2_over_G =
potential->vrot * potential->vrot / phys_const->const_newton_G;
potential->epsilon2 = epsilon * epsilon;
}
/**
* @brief Prints the properties of the external potential to stdout.
*
* @param potential The external potential properties.
*/
static INLINE void potential_print_backend(
const struct external_potential* potential) {
message(
"External potential is 'Isothermal' with properties are (x,y,z) = (%e, "
"%e, %e), vrot = %e "
"timestep multiplier = %e, epsilon = %e",
potential->x[0], potential->x[1], potential->x[2], potential->vrot,
potential->timestep_mult, sqrtf(potential->epsilon2));
}
#endif /* SWIFT_ISOTHERMAL_H */