/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2018 Folkert Nobels (nobels@strw.leidenuniv.nl) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_POTENTIAL_HERNQUIST_SDMH05_H #define SWIFT_POTENTIAL_HERNQUIST_SDMH05_H /* Config parameters. */ #include /* Some standard headers. */ #include /* Local includes. */ #include "error.h" #include "gravity.h" #include "parser.h" #include "part.h" #include "physical_constants.h" #include "space.h" #include "units.h" /** * @brief External Potential Properties - Hernquist potential * * We follow the definition of * Springel, Di Matteo & Hernquist, 2005, MNRAS, Vol. 361, Issue 3, 776-794 */ struct external_potential { /*! Position of the centre of potential */ double x[3]; /*! Mass of the halo (total Hernquist mass) */ double mass; /*! Scale length (often as a, to prevent confusion with the cosmological * scale-factor we use al) */ double al; /*! Square of the softening length. Acceleration tends to zero within this * distance from the origin */ double epsilon2; /* Minimum timestep of the potential given by the timestep multiple * times the orbital time at the softening length */ double mintime; /*! Time-step condition pre-factor, is multiplied times the circular orbital * time to get the time steps */ double timestep_mult; /* Additional common parameter inverse of sqrt(GM)*/ double sqrtgm_inv; }; /** * @brief Computes the time-step in a Hernquist potential based on a * fraction of the circular orbital time * * @param time The current time. * @param potential The #external_potential used in the run. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_timestep( double time, const struct external_potential* restrict potential, const struct phys_const* restrict phys_const, const struct gpart* restrict g) { /* Calculate the relative potential with respect to the centre of the * potential */ const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; /* calculate the radius */ const float r = sqrtf(dx * dx + dy * dy + dz * dz + potential->epsilon2); /* Calculate the circular orbital period */ const float period = 2.f * M_PI * sqrtf(r) * (potential->al + r) * potential->sqrtgm_inv; /* Time-step as a fraction of the cirecular orbital time */ const float time_step = potential->timestep_mult * period; return max(time_step, potential->mintime); } /** * @brief Computes the gravitational acceleration from an Hernquist potential. * * Note that the accelerations are multiplied by Newton's G constant * later on. * * a_x = - GM / (a+r)^2 * x/r * a_y = - GM / (a+r)^2 * y/r * a_z = - GM / (a+r)^2 * z/r * * @param time The current time. * @param potential The #external_potential used in the run. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static void external_gravity_acceleration( double time, const struct external_potential* potential, const struct phys_const* const phys_const, struct gpart* g) { /* Determine the position relative to the centre of the potential */ const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; /* Calculate the acceleration */ const float r = sqrtf(dx * dx + dy * dy + dz * dz + potential->epsilon2); const float r_plus_a_inv = 1.f / (r + potential->al); const float r_plus_a_inv2 = r_plus_a_inv * r_plus_a_inv; const float acc = -potential->mass * r_plus_a_inv2 / r; const float pot = -potential->mass * r_plus_a_inv; g->a_grav[0] += acc * dx; g->a_grav[1] += acc * dy; g->a_grav[2] += acc * dz; gravity_add_comoving_potential(g, pot); } /** * @brief Computes the gravitational potential energy of a particle in an * Hernquist potential. * * phi = - GM/(r+a) * * @param time The current time (unused here). * @param potential The #external_potential used in the run. * @param phys_const Physical constants in internal units. * @param g Pointer to the particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_get_potential_energy( double time, const struct external_potential* potential, const struct phys_const* const phys_const, const struct gpart* g) { const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; const float r = sqrtf(dx * dx + dy * dy + dz * dz); const float r_plus_alinv = 1.f / (r + potential->al); return -phys_const->const_newton_G * potential->mass * r_plus_alinv; } /** * @brief Initialises the external potential properties in the internal system * of units. * * @param parameter_file The parsed parameter file * @param phys_const Physical constants in internal units * @param us The current internal system of units * @param potential The external potential properties to initialize */ static INLINE void potential_init_backend( struct swift_params* parameter_file, const struct phys_const* phys_const, const struct unit_system* us, const struct space* s, struct external_potential* potential) { /* Define the default value */ static const int idealized_disk_default = 0; static const double M200_default = 0.; static const double V200_default = 0.; static const double R200_default = 0.; /* Read in the position of the centre of potential */ parser_get_param_double_array(parameter_file, "HernquistPotential:position", 3, potential->x); /* Is the position absolute or relative to the centre of the box? */ const int useabspos = parser_get_param_int(parameter_file, "HernquistPotential:useabspos"); if (!useabspos) { potential->x[0] += s->dim[0] / 2.; potential->x[1] += s->dim[1] / 2.; potential->x[2] += s->dim[2] / 2.; } /* check whether we use the more advanced idealized disk setting */ const int usedisk = parser_get_opt_param_int( parameter_file, "HernquistPotential:idealizeddisk", idealized_disk_default); if (!usedisk) { /* Read the parameters of the model in the case of the simple * potential form \f$ \Phi = - \frac{GM}{r+a} \f$ */ potential->mass = parser_get_param_double(parameter_file, "HernquistPotential:mass"); potential->al = parser_get_param_double(parameter_file, "HernquistPotential:scalelength"); } else { /* Read the parameters in the case of a idealized disk * There are 3 different possible input parameters M200, V200 and R200 * First read in the mandatory parameters in this case */ const float G_newton = phys_const->const_newton_G; const float kmoversoverMpc = phys_const->const_reduced_hubble; /* Initialize the variables */ double M200 = parser_get_opt_param_double( parameter_file, "HernquistPotential:M200", M200_default); double V200 = parser_get_opt_param_double( parameter_file, "HernquistPotential:V200", V200_default); double R200 = parser_get_opt_param_double( parameter_file, "HernquistPotential:R200", R200_default); const double h = parser_get_param_double(parameter_file, "HernquistPotential:h"); /* Hubble constant assumed for halo masses conversion */ const double H0 = h * kmoversoverMpc; /* There are 3 legit runs possible with use disk, * with a known M200, V200 or R200 */ if (M200 != 0.0) { /* Calculate V200 and R200 from M200 */ V200 = cbrt(10. * M200 * G_newton * H0); R200 = V200 / (10 * H0); } else if (V200 != 0.0) { /* Calculate M200 and R200 from V200 */ M200 = V200 * V200 * V200 / (10. * G_newton * H0); R200 = V200 / (10 * H0); } else if (R200 != 0.0) { /* Calculate M200 and V200 from R200 */ V200 = 10. * H0 * R200; M200 = V200 * V200 * V200 / (10. * G_newton * H0); } else { error("Please specify one of the 3 variables M200, V200 or R200"); } /* message("M200 = %g, R200 = %g, V200 = %g", M200, R200, V200); */ /* message("H0 = %g", H0); */ /* Get the concentration from the parameter file */ const double concentration = parser_get_param_double( parameter_file, "HernquistPotential:concentration"); /* Calculate the Scale radius using the NFW definition */ const double RS = R200 / concentration; /* Calculate the Hernquist equivalent scale length */ potential->al = RS * sqrt(2. * (log(1. + concentration) - concentration / (1. + concentration))); /* Depending on the disk mass and the bulge mass, the halo * gets a different mass. Because of this, we read the fractions * from the parameter file and calculate the absolute mass */ const double diskfraction = parser_get_param_double( parameter_file, "HernquistPotential:diskfraction"); const double bulgefraction = parser_get_param_double( parameter_file, "HernquistPotential:bulgefraction"); /* Calculate the mass of the bulge and disk from the parameters */ const double Mdisk = M200 * diskfraction; const double Mbulge = M200 * bulgefraction; /* Store the mass of the DM halo */ potential->mass = M200 - Mdisk - Mbulge; } /* Retrieve the timestep and softening of the potential */ potential->timestep_mult = parser_get_param_float( parameter_file, "HernquistPotential:timestep_mult"); const float epsilon = parser_get_param_double(parameter_file, "HernquistPotential:epsilon"); potential->epsilon2 = epsilon * epsilon; /* Calculate a common factor in the calculation, i.e. 1/sqrt(GM)*/ const float sqrtgm = sqrtf(phys_const->const_newton_G * potential->mass); potential->sqrtgm_inv = 1. / sqrtgm; /* Compute the minimal time-step. */ /* This is a fraction of the circular orbital time at the softened radius */ potential->mintime = potential->timestep_mult * 2.f * sqrtf(epsilon) * M_PI * (potential->al + epsilon) * potential->sqrtgm_inv; } /** * @brief prints the properties of the external potential to stdout. * * @param potential the external potential properties. */ static inline void potential_print_backend( const struct external_potential* potential) { message( "external potential is 'hernquist Springel, Di Matteo & Hernquist 2005' " "with properties are (x,y,z) = (%e, %e, %e), mass = %e scale length = %e " ", minimum time = %e timestep multiplier = %e", potential->x[0], potential->x[1], potential->x[2], potential->mass, potential->al, potential->mintime, potential->timestep_mult); } #endif /* SWIFT_POTENTIAL_HERNQUIST_SDMH05_H */