/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2018 Folkert Nobels (nobels@strw.leidenuniv.nl)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_POTENTIAL_HERNQUIST_H
#define SWIFT_POTENTIAL_HERNQUIST_H
/* Config parameters. */
#include
/* Some standard headers. */
#include
/* Local includes. */
#include "error.h"
#include "gravity.h"
#include "parser.h"
#include "part.h"
#include "physical_constants.h"
#include "space.h"
#include "units.h"
/**
* @brief External Potential Properties - Hernquist potential
*/
struct external_potential {
/*! Position of the centre of potential */
double x[3];
/*! Mass of the halo (total Hernquist mass) */
double mass;
/*! M200 mass, mass within R200 */
double M200;
/*! R200 */
double R200;
/*! concentration of the halo */
double c;
/*! Scale length (often as a, to prevent confusion with the cosmological
* scale-factor we use al) */
double al;
/*! NFW equivalent scale radius */
double Rs;
/*! Square of the softening length. Acceleration tends to zero within this
* distance from the origin */
double epsilon2;
/* Minimum timestep of the potential given by the timestep multiple
* times the orbital time at the softening length */
double mintime;
/*! Time-step condition pre-factor, is multiplied times the circular orbital
* time to get the time steps */
double timestep_mult;
/*! Inverse of the sqrt of G*M, a common factor */
double sqrtgm_inv;
/*! Mode to use 0 for simplest form of potential purely 1 for idealized
* galaxies */
int usedisk;
};
/**
* @brief Computes the time-step in a Hernquist potential based on a
* fraction of the circular orbital time
*
* @param time The current time.
* @param potential The #external_potential used in the run.
* @param phys_const The physical constants in internal units.
* @param g Pointer to the g-particle data.
*/
__attribute__((always_inline)) INLINE static float external_gravity_timestep(
double time, const struct external_potential* restrict potential,
const struct phys_const* restrict phys_const,
const struct gpart* restrict g) {
/* Calculate the relative potential with respect to the centre of the
* potential */
const float dx = g->x[0] - potential->x[0];
const float dy = g->x[1] - potential->x[1];
const float dz = g->x[2] - potential->x[2];
/* Calculate the radius */
const float r = sqrtf(dx * dx + dy * dy + dz * dz + potential->epsilon2);
/* Calculate the circular orbital period */
const float period =
2.f * M_PI * sqrtf(r) * (potential->al + r) * potential->sqrtgm_inv;
/* Time-step as a fraction of the cirecular orbital time */
const float time_step = potential->timestep_mult * period;
return max(time_step, potential->mintime);
}
/**
* @brief Computes the gravitational acceleration from an Hernquist potential.
*
* Note that the accelerations are multiplied by Newton's G constant
* later on.
*
* a_x = - GM / (a+r)^2 * x/r
* a_y = - GM / (a+r)^2 * y/r
* a_z = - GM / (a+r)^2 * z/r
*
* @param time The current time.
* @param potential The #external_potential used in the run.
* @param phys_const The physical constants in internal units.
* @param g Pointer to the g-particle data.
*/
__attribute__((always_inline)) INLINE static void external_gravity_acceleration(
double time, const struct external_potential* potential,
const struct phys_const* const phys_const, struct gpart* g) {
/* Determine the position relative to the centre of the potential */
const float dx = g->x[0] - potential->x[0];
const float dy = g->x[1] - potential->x[1];
const float dz = g->x[2] - potential->x[2];
/* Calculate the acceleration */
const float r2 = dx * dx + dy * dy + dz * dz + potential->epsilon2;
const float r = sqrtf(r2);
const float r_plus_a_inv = 1.f / (r + potential->al);
const float r_plus_a_inv2 = r_plus_a_inv * r_plus_a_inv;
const float acc = -potential->mass * r_plus_a_inv2 / r;
const float pot = -potential->mass * r_plus_a_inv;
g->a_grav[0] += acc * dx;
g->a_grav[1] += acc * dy;
g->a_grav[2] += acc * dz;
gravity_add_comoving_potential(g, pot);
}
/**
* @brief Computes the gravitational potential energy of a particle in an
* Hernquist potential.
*
* phi = - GM/(r+a)
*
* @param time The current time (unused here).
* @param potential The #external_potential used in the run.
* @param phys_const Physical constants in internal units.
* @param g Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float
external_gravity_get_potential_energy(
double time, const struct external_potential* potential,
const struct phys_const* const phys_const, const struct gpart* g) {
const float dx = g->x[0] - potential->x[0];
const float dy = g->x[1] - potential->x[1];
const float dz = g->x[2] - potential->x[2];
const float r = sqrtf(dx * dx + dy * dy + dz * dz + potential->epsilon2);
const float r_plus_alinv = 1.f / (r + potential->al);
return -phys_const->const_newton_G * potential->mass * r_plus_alinv;
}
/**
* @brief Initialises the external potential properties in the internal system
* of units.
*
* @param parameter_file The parsed parameter file
* @param phys_const Physical constants in internal units
* @param us The current internal system of units
* @param potential The external potential properties to initialize
*/
static INLINE void potential_init_backend(
struct swift_params* parameter_file, const struct phys_const* phys_const,
const struct unit_system* us, const struct space* s,
struct external_potential* potential) {
/* Define the default value */
static const int idealized_disk_default = 0;
static const double M200_default = 0.;
static const double V200_default = 0.;
static const double R200_default = 0.;
/* Read in the position of the centre of potential */
parser_get_param_double_array(parameter_file, "HernquistPotential:position",
3, potential->x);
/* Is the position absolute or relative to the centre of the box? */
const int useabspos =
parser_get_param_int(parameter_file, "HernquistPotential:useabspos");
if (!useabspos) {
potential->x[0] += s->dim[0] / 2.;
potential->x[1] += s->dim[1] / 2.;
potential->x[2] += s->dim[2] / 2.;
}
/* Check whether we use the more advanced idealized disk setting */
potential->usedisk = parser_get_opt_param_int(
parameter_file, "HernquistPotential:idealizeddisk",
idealized_disk_default);
if (!potential->usedisk) {
/* Read the parameters of the model in the case of the simple
* potential form \f$ \Phi = - \frac{GM}{r+a} \f$ */
potential->mass =
parser_get_param_double(parameter_file, "HernquistPotential:mass");
potential->al = parser_get_param_double(parameter_file,
"HernquistPotential:scalelength");
} else {
/* Read the parameters in the case of a idealized disk
* There are 3 different possible input parameters M200, V200 and R200
* First read in the mandatory parameters in this case */
const float G_newton = phys_const->const_newton_G;
const float kmoversoverMpc = phys_const->const_reduced_hubble;
/* Initialize the variables */
double M200 = parser_get_opt_param_double(
parameter_file, "HernquistPotential:M200", M200_default);
double V200 = parser_get_opt_param_double(
parameter_file, "HernquistPotential:V200", V200_default);
double R200 = parser_get_opt_param_double(
parameter_file, "HernquistPotential:R200", R200_default);
const double h =
parser_get_param_double(parameter_file, "HernquistPotential:h");
/* Hubble constant assumed for halo masses conversion */
const double H0 = h * kmoversoverMpc;
/* There are 3 legit runs possible with use disk,
* with a known M200, V200 or R200 */
if (M200 != 0.0) {
/* Calculate V200 and R200 from M200 */
V200 = cbrt(10. * M200 * G_newton * H0);
R200 = V200 / (10 * H0);
} else if (V200 != 0.0) {
/* Calculate M200 and R200 from V200 */
M200 = V200 * V200 * V200 / (10. * G_newton * H0);
R200 = V200 / (10 * H0);
} else if (R200 != 0.0) {
/* Calculate M200 and V200 from R200 */
V200 = 10. * H0 * R200;
M200 = V200 * V200 * V200 / (10. * G_newton * H0);
} else {
error("Please specify one of the 3 variables M200, V200 or R200");
}
potential->M200 = M200;
potential->R200 = R200;
/* Get the concentration from the parameter file */
potential->c = parser_get_param_double(parameter_file,
"HernquistPotential:concentration");
/* Define the concentration a bit more simple */
const double cc = potential->c;
/* Calculate the Scale radius using the NFW definition */
potential->Rs = R200 / cc;
/* Define inv concentration */
const double cc_inv = 1 / cc;
/* Calculate b using the concentration*/
const double b = 2. * cc_inv * cc_inv * (log(1. + cc) - cc / (1. + cc));
/* Calculate the Hernquist equivalent scale length */
potential->al = R200 * (b + sqrt(b)) / (1 - b);
/* Define R200 inv*/
const double R200_inv = 1. / R200;
/* Calculate the total mass */
const double M_total_mass = (potential->R200 + potential->al) *
(potential->R200 + potential->al) * R200_inv *
R200_inv * potential->M200;
/* Depending on the disk mass and and the bulge mass, the halo
* gets a different mass. Because of this, we read the fractions
* from the parameter file and calculate the absolute mass */
const double diskfraction = parser_get_param_double(
parameter_file, "HernquistPotential:diskfraction");
const double bulgefraction = parser_get_param_double(
parameter_file, "HernquistPotential:bulgefraction");
/* Calculate the mass of the bulge and disk from the parameters */
const double Mdisk = M200 * diskfraction;
const double Mbulge = M200 * bulgefraction;
/* Store the mass of the DM halo */
potential->mass = M_total_mass - Mdisk - Mbulge;
}
/* Retrieve the timestep and softening of the potential */
potential->timestep_mult = parser_get_param_float(
parameter_file, "HernquistPotential:timestep_mult");
const float epsilon =
parser_get_param_double(parameter_file, "HernquistPotential:epsilon");
potential->epsilon2 = epsilon * epsilon;
/* Calculate a common factor in the calculation, i.e. 1/sqrt(GM)*/
const float sqrtgm = sqrtf(phys_const->const_newton_G * potential->mass);
potential->sqrtgm_inv = 1. / sqrtgm;
/* Compute the minimal time-step. */
/* This is a fraction of the circular orbital time at the softened radius */
potential->mintime = potential->timestep_mult * 2.f * sqrtf(epsilon) * M_PI *
(potential->al + epsilon) * potential->sqrtgm_inv;
}
/**
* @brief prints the properties of the external potential to stdout.
*
* @param potential the external potential properties.
*/
static inline void potential_print_backend(
const struct external_potential* potential) {
message(
"external potential is 'hernquist' with properties are (x,y,z) = (%e, "
"%e, %e), mass = %e scale length = %e , minimum time = %e timestep "
"multiplier = %e",
potential->x[0], potential->x[1], potential->x[2], potential->mass,
potential->al, potential->mintime, potential->timestep_mult);
if (potential->usedisk == 1) {
message(
"Running with the idealized disk setup, M200 = %e, R200 = %e, c = %e",
potential->M200, potential->R200, potential->c);
message(
"Hernquist scale length = %e, NFW equivalent scale length = %e, total "
"Hernquist mass = %e",
potential->al, potential->Rs, potential->mass);
}
}
#endif /* SWIFT_POTENTIAL_HERNQUIST_H */