/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2019 Loic Hausammann (loic.hausammann@epfl.ch) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_POTENTIAL_CONSTANT_H #define SWIFT_POTENTIAL_CONSTANT_H /* Config parameters. */ #include /* Some standard headers. */ #include #include /* Local includes. */ #include "error.h" #include "gravity.h" #include "parser.h" #include "part.h" #include "physical_constants.h" #include "space.h" #include "units.h" /** * @brief External Potential Properties - Constant acceleration. */ struct external_potential { /*! Value of the acceleration */ double g[3]; }; /** * @brief Computes the time-step due to the acceleration from an constant * acceleration. * * @param time The current time. * @param potential The #external_potential used in the run. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_timestep( double time, const struct external_potential* restrict potential, const struct phys_const* restrict phys_const, const struct gpart* restrict g) { return FLT_MAX; } /** * @brief Computes the gravitational acceleration from an constant acceleration. * * @param time The current time. * @param potential The #external_potential used in the run. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static void external_gravity_acceleration( double time, const struct external_potential* potential, const struct phys_const* const phys_const, struct gpart* g) { const float gh = g->x[0] * potential->g[0] + g->x[1] * potential->g[1] + g->x[2] * potential->g[2]; const float pot = -gh / 3.f; g->a_grav[0] += potential->g[0]; g->a_grav[1] += potential->g[1]; g->a_grav[2] += potential->g[2]; gravity_add_comoving_potential(g, pot); } /** * @brief Computes the gravitational potential energy of a particle in an * constant acceleration. * * @param time The current time (unused here). * @param potential The #external_potential used in the run. * @param phys_const Physical constants in internal units. * @param g Pointer to the particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_get_potential_energy( double time, const struct external_potential* potential, const struct phys_const* const phys_const, const struct gpart* g) { const float gh = g->x[0] * potential->g[0] + g->x[1] * potential->g[1] + g->x[2] * potential->g[2]; return g->mass * gh; } /** * @brief Initialises the external potential properties in the internal system * of units. * * @param parameter_file The parsed parameter file * @param phys_const Physical constants in internal units * @param us The current internal system of units * @param potential The external potential properties to initialize */ static INLINE void potential_init_backend( struct swift_params* parameter_file, const struct phys_const* phys_const, const struct unit_system* us, const struct space* s, struct external_potential* potential) { /* Read in the acceleration */ parser_get_param_double_array(parameter_file, "ConstantPotential:g_cgs", 3, potential->g); /* Change the unit system */ const double unit_length = units_cgs_conversion_factor(us, UNIT_CONV_LENGTH); const double unit_time = units_cgs_conversion_factor(us, UNIT_CONV_TIME); const double unit_g = unit_length / (unit_time * unit_time); for (int i = 0; i < 3; i++) { // Need to divide by G due to gravity_end_force potential->g[i] /= unit_g * phys_const->const_newton_G; } } /** * @brief Prints the properties of the external potential to stdout. * * @param potential The external potential properties. */ static INLINE void potential_print_backend( const struct external_potential* potential) { message( "External potential is 'Constant' with properties are g = (%e, " "%e, %e)", potential->g[0], potential->g[1], potential->g[2]); } #endif /* SWIFT_CONSTANT_H */