/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2023 Darwin Roduit (darwin.roduit@alumni.epfl.ch) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_POTENTIAL_MWPotential2014_H #define SWIFT_POTENTIAL_MWPotential2014_H /* Config parameters. */ #include /* Some standard headers. */ #include #include /* Local includes. */ #include "error.h" #include "gravity.h" #include "integer_power.h" #include "parser.h" #include "part.h" #include "physical_constants.h" #include "space.h" #include "units.h" #ifdef HAVE_LIBGSL #include #endif #define potential_MW2014_num_coefficients 17 /** * @brief External Potential Properties - MWPotential2014 composed by * NFW + Miyamoto-Nagai + Power Spherical cut-off potentials * * halo --> rho_NFW(r) = rho_0 / ( (r/R_s)*(1+r/R_s)^2 ) * disk --> Phi_MN(R,z) = -G * Mdisk / (R^2 + (Rdisk + * (z^2+Zdisk^2)^1/2)^2)^(1/2) bulge --> rho_PSC(r) = * amplitude*(r_1/r)^alpha*exp(-(r/r_c)^2) * * We however parametrise this in terms of c and virial_mass, Mdisk, Rdisk * and Zdisk. Also, each potential is given a contribution amplitude such that * the resulting potential is: * Phi_tot = f_1 * Phi_NFW + f_2 * Phi_MN + f_3 * Phi_PSC, * with f_1, f_2 and f_3 contained in the array f. * * This potential is inspired by the following article: * galpy: A Python Library for Galactic Dynamics, Jo Bovy (2015), * Astrophys. J. Supp., 216, 29 (arXiv/1412.3451). */ struct external_potential { /*! Position of the centre of potential */ double x[3]; /*! The scale radius of the NFW potential */ double r_s; /*! The pre-factor \f$ 4 \pi G \rho_0 \r_s^3 \f$ */ double pre_factor; /*! Hubble parameter */ double H; /*! The concentration parameter */ double c_200; /*! The virial mass */ double M_200; /*! The NFW density at rs */ double rho_0; /*! Disk Size */ double Rdisk; /*! Disk height */ double Zdisk; /*! Disk Mass */ double Mdisk; /*! Amplitude for the PSC potential */ double amplitude; /*! Reference radius for amplitude */ double r_1; /*! Inner power */ double alpha; /*! Cut-off radius */ double r_c; /*! Contribution of each potential : f[0]*NFW + f[1]*MN + f[2]*PSP */ double f[3]; /*! Prefactor \f$ 2 \pi amplitude r_1^\alpha r_c^(3-\alpha) \f$ */ double prefactor_psc_1; /*! Prefactor \f$ 2 \pi amplitude r_1^\alpha r_c^(2-\alpha) \f$ */ double prefactor_psc_2; /*! Are we using the dynamical friction ?*/ int with_dynamical_friction; /*! Coulomb logarithm for the dynamical friction */ double df_lnLambda; /*! Satellite mass for the dynamical friction in code unit */ double df_satellite_mass; /*! Polynomial fit coefficients for the velocity dispersion model */ double df_polyfit_coeffs[potential_MW2014_num_coefficients]; /*! Minimum velocity dispersion for the velocity dispersion model */ double df_sigma_floor; /*! Radius below which the dynamical friction vanishes */ double df_core_radius; /*! Gamma function evaluation \f$ \Gamma((3-\alpha)/2 \f$ */ double gamma_psc; /*! Time-step condition pre_factor, this factor is used to multiply times the * orbital time, so in the case of 0.01 we take 1% of the orbital time as * the time integration steps */ double timestep_mult; /*! Time-step condition pre_factor, this factor is used to constraints * the time-step so that the norm of v*dt is a fraction of the acceleration */ double df_timestep_mult; /*! Minimum time step based on the orbital time at the softening times * the timestep_mult */ double mintime; /*! Common log term \f$ \ln(1+c_{200}) - \frac{c_{200}}{1 + c_{200}} \f$ */ double log_c200_term; /*! Softening length */ double eps; }; /** * @brief Computes the time-step due to the acceleration from the NFW + MN + PSC * potential as a fraction (timestep_mult) of the circular orbital time of that * particle. * * @param time The current time. * @param potential The #external_potential used in the run. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_timestep( double time, const struct external_potential* restrict potential, const struct phys_const* restrict phys_const, const struct gpart* restrict g) { #ifdef HAVE_LIBGSL const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; const float R2 = dx * dx + dy * dy; const float r = sqrtf(R2 + dz * dz + potential->eps * potential->eps); /* Vcirc for NFW */ const float M_NFW = potential->pre_factor * (logf(1.0f + r / potential->r_s) - r / (r + potential->r_s)); const float Vcirc_NFW = sqrtf((phys_const->const_newton_G * M_NFW) / r); /* Now for MN */ const float R = sqrtf(R2); const float sqrt_term = sqrtf(dz * dz + potential->Zdisk * potential->Zdisk); const float MN_denominator = powf(R2 + powf(potential->Rdisk + sqrt_term, 2.0f), 1.5f); const float dPhi_dR_MN = potential->Mdisk * R / MN_denominator; const float dPhi_dz_MN = potential->Mdisk * dz * (potential->Rdisk + sqrt_term) / (sqrt_term * MN_denominator); const float Vcirc_MN = sqrtf(phys_const->const_newton_G * R * dPhi_dR_MN + phys_const->const_newton_G * dz * dPhi_dz_MN); /* Now for PSC */ const float r2 = r * r; const float M_psc = potential->prefactor_psc_1 * (potential->gamma_psc - gsl_sf_gamma_inc(1.5f - 0.5f * potential->alpha, r2 / (potential->r_c * potential->r_c))); const float Vcirc_PSC = sqrtf(phys_const->const_newton_G * M_psc / r); /* Total circular velocity */ const float Vcirc = sqrtf(potential->f[0] * Vcirc_NFW * Vcirc_NFW + potential->f[1] * Vcirc_MN * Vcirc_MN + potential->f[2] * Vcirc_PSC * Vcirc_PSC); const float period = 2.0f * M_PI * r / Vcirc; /* Time-step as a fraction of the circular period */ float time_step = potential->timestep_mult * period; /* Add dynamical friction */ if (potential->with_dynamical_friction) { const float vx = g->v_full[0]; const float vy = g->v_full[1]; const float vz = g->v_full[2]; float v = sqrtf(vx * vx + vy * vy + vz * vz); const float ax = g->a_grav[0]; const float ay = g->a_grav[1]; const float az = g->a_grav[2]; float a = sqrtf(ax * ax + ay * ay + az * az); time_step = min(time_step, potential->df_timestep_mult * v / a); } return max(time_step, potential->mintime); #else error("Code not compiled with GSL. Can't compute MWPotential2014."); return 0.0; #endif } /** * @brief Computes the mass density of the MW2014 model. * * @param x The x coordinate. * @param y The y coordinate. * @param z The y coordinate. * @param time The current time (unused here). * @param potential The #external_potential used in the run. * @param phys_const Physical constants in internal units. */ __attribute__((always_inline)) INLINE static float external_gravity_get_density( float x, float y, float z, double time, const struct external_potential* potential, const struct phys_const* const phys_const) { /* First for the NFW profile */ const float R2 = x * x + y * y; const float r = sqrtf(R2 + z * z + potential->eps * potential->eps); /* First for the NFW part */ const float rho_NFW = potential->rho_0 / ((r / potential->r_s) * (1 + r / potential->r_s) * (1 + r / potential->r_s)); /* Second the MN disk */ const float zb = sqrtf(potential->Zdisk * potential->Zdisk + z * z); const float azb2 = integer_pow(potential->Rdisk + zb, 2); const float cte = (potential->Zdisk * potential->Zdisk * potential->Mdisk) / (4 * M_PI); const float rho_MN = cte * (potential->Rdisk * R2 + (potential->Rdisk + 3 * zb) * azb2) / (pow(R2 + azb2, 2.5) * zb * zb * zb); /* Third the bulge */ const float rho_PSC = potential->amplitude * pow(potential->r_1 / r, potential->alpha) * exp(-integer_pow(r / potential->r_c, 2)); /* Total density */ const float density = potential->f[0] * rho_NFW + potential->f[1] * rho_MN + potential->f[2] * rho_PSC; return density; } /** * @brief Computes the gravitational acceleration from an NFW Halo potential + * MN disk + PSC bulge. * * Note that the accelerations are multiplied by Newton's G constant * later on. * * a_x = 4 pi \rho_0 r_s^3 ( 1/((r+rs)*r^2) - log(1+r/rs)/r^3) * x * - dphi_PSC/dr*x/r * a_y = 4 pi \rho_0 r_s^3 ( 1/((r+rs)*r^2) - log(1+r/rs)/r^3) * y * - dphi_PSC/dr*y/r * a_z = 4 pi \rho_0 r_s^3 ( 1/((r+rs)*r^2) - log(1+r/rs)/r^3) * z * - dphi_PSC/dr*z/r * * * @param time The current time. * @param potential The #external_potential used in the run. * @param phys_const The physical constants in internal units. * @param g Pointer to the g-particle data. */ __attribute__((always_inline)) INLINE static void external_gravity_acceleration( double time, const struct external_potential* restrict potential, const struct phys_const* restrict phys_const, struct gpart* restrict g) { #ifdef HAVE_LIBGSL const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; /* First for the NFW part */ const float R2 = dx * dx + dy * dy; const float r = sqrtf(R2 + dz * dz + potential->eps * potential->eps); const float r_inv = 1.0f / r; const float M_NFW = potential->pre_factor * (logf(1.0f + r / potential->r_s) - r / (r + potential->r_s)); const float dpot_dr_NFW = M_NFW * r_inv * r_inv; const float pot_nfw = -potential->pre_factor * logf(1.0f + r / potential->r_s) * r_inv; g->a_grav[0] -= potential->f[0] * dpot_dr_NFW * dx * r_inv; g->a_grav[1] -= potential->f[0] * dpot_dr_NFW * dy * r_inv; g->a_grav[2] -= potential->f[0] * dpot_dr_NFW * dz * r_inv; gravity_add_comoving_potential(g, potential->f[0] * pot_nfw); /* Now the the MN disk */ const float f1 = sqrtf(potential->Zdisk * potential->Zdisk + dz * dz); const float f2 = potential->Rdisk + f1; const float f3 = powf(R2 + f2 * f2, -1.5f); const float mn_term = potential->Rdisk + sqrtf(potential->Zdisk + dz * dz); const float pot_mn = -potential->Mdisk / sqrtf(R2 + mn_term * mn_term); g->a_grav[0] -= potential->f[1] * potential->Mdisk * f3 * dx; g->a_grav[1] -= potential->f[1] * potential->Mdisk * f3 * dy; g->a_grav[2] -= potential->f[1] * potential->Mdisk * f3 * (f2 / f1) * dz; gravity_add_comoving_potential(g, potential->f[1] * pot_mn); /* Now the the PSC bulge */ const float r2 = r * r; const float M_psc = potential->prefactor_psc_1 * (potential->gamma_psc - gsl_sf_gamma_inc(1.5f - 0.5f * potential->alpha, r2 / (potential->r_c * potential->r_c))); const float dpot_dr = M_psc / r2; const float pot_psc = -M_psc / r - potential->prefactor_psc_2 * gsl_sf_gamma_inc(1.0f - 0.5f * potential->alpha, r2 / (potential->r_c * potential->r_c)); g->a_grav[0] -= potential->f[2] * dpot_dr * dx * r_inv; g->a_grav[1] -= potential->f[2] * dpot_dr * dy * r_inv; g->a_grav[2] -= potential->f[2] * dpot_dr * dz * r_inv; gravity_add_comoving_potential(g, potential->f[2] * pot_psc); /* Add dynamical friction */ if (potential->with_dynamical_friction) { const float sqrtpi = sqrtf(M_PI); const float vx = g->v_full[0]; const float vy = g->v_full[1]; const float vz = g->v_full[2]; const float v = sqrtf(vx * vx + vy * vy + vz * vz); /* Compute the velocity dispertion as a function of the radius r, using * using a high order polynomial interpolation. */ double sigma = 0; for (int i = 0; i < potential_MW2014_num_coefficients; i++) sigma += potential ->df_polyfit_coeffs[potential_MW2014_num_coefficients - 1 - i] * integer_pow(r, i); /* Prevent the velocity dispersion to be zero */ sigma = fmax(potential->df_sigma_floor, sigma); /* Compute the chi parameter */ double X = v / (sqrt(2) * sigma); double amp1 = erf(X) - ((2 * X / sqrtpi) * exp(-X * X)); /* Kill the dynamical friction at the center */ amp1 *= max(0, erf((r - potential->df_core_radius) / potential->df_core_radius / 2.0)); /* Compute the density */ float density = external_gravity_get_density(dx, dy, dz, time, potential, phys_const); /* Final factor (Binney & Tremaine 2008, eq. 8.7) */ float dyn_fric_timescale_inv = -4 * M_PI * integer_pow(phys_const->const_newton_G, 2) / integer_pow(v, 3) * density * potential->df_lnLambda * amp1 * potential->df_satellite_mass; /* Sanity check */ if (dyn_fric_timescale_inv > 0) error("dyn_fric_timescale_inv is larger than zero (%g %g %g\n) !", dyn_fric_timescale_inv, erf((r - 10) / 20), r); /* Acceleration is per unit of G */ dyn_fric_timescale_inv /= phys_const->const_newton_G; g->a_grav[0] += dyn_fric_timescale_inv * vx; g->a_grav[1] += dyn_fric_timescale_inv * vy; g->a_grav[2] += dyn_fric_timescale_inv * vz; } #else error("Code not compiled with GSL. Can't compute MWPotential2014."); #endif } /** * @brief Computes the gravitational potential energy of a particle in an * NFW potential + MN potential. * * phi = f[0] * (-4 * pi * G * rho_0 * r_s^3 * ln(1+r/r_s)) - f[1] * (G * Mdisk * / sqrt(R^2 + (Rdisk + sqrt(z^2 + Zdisk^2))^2)) + f[2] * [- G / r * (2 * pi * * amplitude * r_1^alpha r_c^(3 - alpha) * gamma_inf((3 - alpha)/2, r^2 / r_c^2) * ) - 2 * pi * G * amplitude * r_1^alpha * r_c^(2 - alpha) * Gamma_sup((2-alpha)/2, r^2 / r_c^2 ) ] * * @param time The current time (unused here). * @param potential The #external_potential used in the run. * @param phys_const Physical constants in internal units. * @param g Pointer to the particle data. */ __attribute__((always_inline)) INLINE static float external_gravity_get_potential_energy( double time, const struct external_potential* potential, const struct phys_const* const phys_const, const struct gpart* g) { #ifdef HAVE_LIBGSL const float dx = g->x[0] - potential->x[0]; const float dy = g->x[1] - potential->x[1]; const float dz = g->x[2] - potential->x[2]; /* First for the NFW profile */ const float R2 = dx * dx + dy * dy; const float r = sqrtf(R2 + dz * dz + potential->eps * potential->eps); const float r_inv = 1.0f / r; const float pot_nfw = -potential->pre_factor * logf(1.0f + r / potential->r_s) * r_inv; /* Now for the MN disk */ const float sqrt_term = sqrtf(dz * dz + potential->Zdisk * potential->Zdisk); const float MN_denominator = sqrtf(R2 + powf(potential->Rdisk + sqrt_term, 2.0f)); const float mn_pot = -potential->Mdisk / MN_denominator; /* Now for PSC bulge */ const float r2 = r * r; const float M_psc = potential->prefactor_psc_1 * (potential->gamma_psc - gsl_sf_gamma_inc(1.5f - 0.5f * potential->alpha, r2 / (potential->r_c * potential->r_c))); const float psc_pot = -M_psc / r - potential->prefactor_psc_2 * gsl_sf_gamma_inc(1.0f - 0.5f * potential->alpha, r2 / (potential->r_c * potential->r_c)); return phys_const->const_newton_G * (potential->f[0] * pot_nfw + potential->f[1] * mn_pot + potential->f[2] * psc_pot); #else error("Code not compiled with GSL. Can't compute MWPotential2014."); return 0.0; #endif } /** * @brief Initialises the external potential properties in the internal system * of units. * * @param parameter_file The parsed parameter file * @param phys_const Physical constants in internal units * @param us The current internal system of units * @param potential The external potential properties to initialize */ static INLINE void potential_init_backend( struct swift_params* parameter_file, const struct phys_const* phys_const, const struct unit_system* us, const struct space* s, struct external_potential* potential) { #ifdef HAVE_LIBGSL /* Read in the position of the centre of potential */ parser_get_param_double_array( parameter_file, "MWPotential2014Potential:position", 3, potential->x); /* Is the position absolute or relative to the centre of the box? */ const int useabspos = parser_get_param_int( parameter_file, "MWPotential2014Potential:useabspos"); /* Define the default value in the above system of units*/ const double c_200_default = 9.823403437774843; const double M_200_Msun_default = 147.41031542774076e10; /* M_sun */ const double H_default = 127.78254614201471e-2; /* no unit */ const double Mdisk_Msun_default = 6.8e10; /* M_sun */ const double Rdisk_kpc_default = 3.0; /* kpc */ const double Zdisk_kpc_default = 0.280; /* kpc */ const double amplitude_Msun_per_kpc3_default = 1e10; /* M_sun/kpc^3 */ const double r_1_kpc_default = 1.0; /* kpc */ const double alpha_default = 1.8; /* no unit */ const double r_c_kpc_default = 1.9; /* kpc */ potential->f[0] = 0.4367419745056084; /* no unit */ potential->f[1] = 1.002641971008805; /* no unit */ potential->f[2] = 0.022264787598364262; /* no unit */ if (!useabspos) { potential->x[0] += s->dim[0] / 2.; potential->x[1] += s->dim[1] / 2.; potential->x[2] += s->dim[2] / 2.; } const double df_polyfit_coeffs_default[potential_MW2014_num_coefficients] = { -2.96536595e-31, 8.88944631e-28, -1.18280578e-24, 9.29479457e-22, -4.82805265e-19, 1.75460211e-16, -4.59976540e-14, 8.83166045e-12, -1.24747700e-09, 1.29060404e-07, -9.65315026e-06, 5.10187806e-04, -1.83800281e-02, 4.26501444e-01, -5.78038064e+00, 3.57956721e+01, 1.85478908e+02}; /* Read the other parameters of the model */ potential->timestep_mult = parser_get_param_double( parameter_file, "MWPotential2014Potential:timestep_mult"); /* Bug fix : Read the softening length from the params file */ potential->eps = parser_get_param_double(parameter_file, "MWPotential2014Potential:epsilon"); potential->c_200 = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:concentration", c_200_default); potential->M_200 = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:M_200_Msun", M_200_Msun_default); potential->H = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:H", H_default); potential->Mdisk = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:Mdisk_kpc", Mdisk_Msun_default); potential->Rdisk = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:Rdisk_kpc", Rdisk_kpc_default); potential->Zdisk = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:Zdisk_kpc", Zdisk_kpc_default); potential->amplitude = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:amplitude_Msun_per_kpc3", amplitude_Msun_per_kpc3_default); potential->r_1 = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:r_1_kpc", r_1_kpc_default); potential->alpha = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:alpha", alpha_default); potential->r_c = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:r_c_kpc", r_c_kpc_default); parser_get_opt_param_double_array( parameter_file, "MWPotential2014Potential:potential_factors", 3, potential->f); potential->with_dynamical_friction = parser_get_opt_param_int( parameter_file, "MWPotential2014Potential:with_dynamical_friction", 0); potential->df_lnLambda = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:df_lnLambda", 5.0); potential->df_satellite_mass = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:df_satellite_mass_in_Msun", 1e10); potential->df_timestep_mult = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:df_timestep_mult", 0.1); potential->df_core_radius = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:df_core_radius_in_kpc", 10); potential->df_sigma_floor = parser_get_opt_param_double( parameter_file, "MWPotential2014Potential:df_sigma_floor_km_p_s", 10.0); /* Read all the dynamical friction coefficients */ for (int i = 0; i < potential_MW2014_num_coefficients; i++) { char param_name[128]; sprintf(param_name, "MWPotential2014Potential:df_polyfit_coeffs%2d", i); potential->df_polyfit_coeffs[i] = parser_get_opt_param_double( parameter_file, param_name, df_polyfit_coeffs_default[i]); } /* Convert to internal system of units by using the * physical constants defined in this system */ const double kpc = 1000. * phys_const->const_parsec; const double kms = 1e5 / units_cgs_conversion_factor(us, UNIT_CONV_VELOCITY); potential->M_200 *= phys_const->const_solar_mass; potential->H *= phys_const->const_reduced_hubble; potential->Mdisk *= phys_const->const_solar_mass; potential->Rdisk *= kpc; potential->Zdisk *= kpc; potential->r_1 *= kpc; potential->r_c *= kpc; potential->amplitude *= phys_const->const_solar_mass / (kpc * kpc * kpc); potential->df_sigma_floor *= kms; potential->df_satellite_mass *= phys_const->const_solar_mass; potential->df_core_radius *= kpc; /* units conversion for polyfit coefficients */ for (int i = 0; i < potential_MW2014_num_coefficients; i++) potential->df_polyfit_coeffs[potential_MW2014_num_coefficients - 1 - i] /= integer_pow(kpc, i) * kms; /* Compute rho_c */ const double rho_c = 3.0 * potential->H * potential->H / (8.0 * M_PI * phys_const->const_newton_G); /* Compute R_200 */ const double R_200 = cbrtf(3.0 * potential->M_200 / (4. * M_PI * 200.0 * rho_c)); /* NFW scale-radius */ potential->r_s = R_200 / potential->c_200; const double r_s3 = potential->r_s * potential->r_s * potential->r_s; /* Log(c_200) term appearing in many expressions */ potential->log_c200_term = log(1. + potential->c_200) - potential->c_200 / (1. + potential->c_200); potential->rho_0 = potential->M_200 / (4.f * M_PI * r_s3 * potential->log_c200_term); /* Pre-factor for the accelerations (note G is multiplied in later on) */ potential->pre_factor = 4.0f * M_PI * potential->rho_0 * r_s3; /* Prefactor for the mass of the PSC profile */ potential->prefactor_psc_1 = 2.0 * M_PI * potential->amplitude * pow(potential->r_1, potential->alpha) * pow(potential->r_c, 3.0 - potential->alpha); /* Gamma function value for the mass of the PSC profile */ potential->gamma_psc = gsl_sf_gamma(1.5 - 0.5 * potential->alpha); /* Prefactor for the potential of the PSC profile */ potential->prefactor_psc_2 = 2.0 * M_PI * potential->amplitude * pow(potential->r_1, potential->alpha) * pow(potential->r_c, 2.0 - potential->alpha); /* Compute the orbital time at the softening radius */ const double sqrtgm = sqrt(phys_const->const_newton_G * potential->M_200); const double epslnthing = log(1.0 + potential->eps / potential->r_s) - potential->eps / (potential->eps + potential->r_s); potential->mintime = 2. * M_PI * potential->eps * sqrtf(potential->eps) * sqrtf(potential->log_c200_term / epslnthing) / sqrtgm * potential->timestep_mult; #else error("Code not compiled with GSL. Can't compute MWPotential2014."); #endif } /** * @brief Prints the properties of the external potential to stdout. * * @param potential The external potential properties. */ static INLINE void potential_print_backend( const struct external_potential* potential) { message( "External potential is 'MWPotential2014' " "with properties (in internal units) are " "(x,y,z) = " "(%e, %e, %e), c_200 = %e, M_200 = %e, H = %e, M_disk = %e, R_disk = %e, " "z_disk = %e, amplitude = %e, r_1 = %e, alpha = %e, r_c = %e, timestep " "multiplier = %e mintime = %e", potential->x[0], potential->x[1], potential->x[2], potential->c_200, potential->M_200, potential->H, potential->Mdisk, potential->Rdisk, potential->Zdisk, potential->amplitude, potential->r_1, potential->alpha, potential->r_c, potential->timestep_mult, potential->mintime); } #endif /* SWIFT_POTENTIAL_MWPotential2014_H */