/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2023 Matthieu Schaller (schaller@strw.leidenuniv.nl)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_FORCING_ROBERTS_FLOW_H
#define SWIFT_FORCING_ROBERTS_FLOW_H
/* Config parameters. */
#include
/* Standard includes. */
#include
/* Local includes. */
#include "error.h"
#include "parser.h"
#include "part.h"
#include "physical_constants.h"
#include "space.h"
#include "units.h"
/* Type of flow */
enum flow {
Roberts_flow_1 = 1,
Roberts_flow_2 = 2,
Roberts_flow_3 = 3,
Roberts_flow_4 = 4
};
/**
* @brief Forcing Term Properties
*/
struct forcing_terms {
/*! Reference velocity (internal units) */
float u0;
/*! Velocity scaling along the z direction */
float Vz_factor;
/*! Kind of RobertsFlow */
enum flow Flow_kind;
/*! Wavenumber of the flow*/
float kv;
};
/**
* @brief Computes the forcing terms.
*
* Based on G.O.Roberts, Dynamo action of fluid motions with two-dimensional
* periodicity, Royal Society, Feb. 3, 1972;
* Tilgner & Brandenburg, 2008, MNRAS, 391, 1477;
* Brandenburg & Ntormousi, arxiv 2211.03476.
* This version differs from the paper by imposing the velocity directly rather
* than by giving the particles an acceleration.
*
* @param time The current time.
* @param terms The properties of the forcing terms.
* @param s The #space we act on.
* @param phys_const The physical constants in internal units.
* @param p Pointer to the particle data.
* @param xp Pointer to the extended particle data.
*/
__attribute__((always_inline)) INLINE static void forcing_terms_apply(
const double time, const struct forcing_terms* terms, const struct space* s,
const struct phys_const* phys_const, struct part* p, struct xpart* xp) {
enum flow Flow_kind = terms->Flow_kind;
const double L = s->dim[0];
const float u0 = terms->u0;
const float Vz_factor = terms->Vz_factor;
const double k0 = (2. * M_PI / L) * terms->kv;
const double kf = M_SQRT2 * k0;
double v_Rob[3];
/* Switching between different kinds of flows */
/* Here we use definitions based on Brandenburg & Ntormousi, arxiv 2211.03476,
* SB3 and SB4 */
/* The difference between Roberts definitions and the definitions used here
* are the following: Roberts worked in yz plane, we work in xy plane just for
* convenience, so our formulas differ from Robets article by several
* rotations. Theese rotations are equivalent to yzx -> xyz permutation. Also
* Roberts cells are tilted 45 degrees and are sqrt(2) times larger We
* normalize flow in such way that the rms velocity is u0 (when Vzfactor=1)*/
switch (Flow_kind) {
case Roberts_flow_1:
/* Based on Brandenburg & Ntormousi, arxiv 2211.03476, SB4, flow 1 */
v_Rob[0] = u0 * sin(k0 * p->x[0]) * cos(k0 * p->x[1]);
v_Rob[1] = -u0 * cos(k0 * p->x[0]) * sin(k0 * p->x[1]);
v_Rob[2] = u0 * M_SQRT2 * sin(k0 * p->x[0]) * sin(k0 * p->x[1]);
break;
case Roberts_flow_2:
/* Based on Brandenburg & Ntormousi, arxiv 2211.03476, SB4, flow 2 */
v_Rob[0] = u0 * sin(k0 * p->x[0]) * cos(k0 * p->x[1]);
v_Rob[1] = -u0 * cos(k0 * p->x[0]) * sin(k0 * p->x[1]);
v_Rob[2] = u0 * M_SQRT2 * cos(k0 * p->x[0]) * cos(k0 * p->x[1]);
break;
case Roberts_flow_3:
/* Based on Brandenburg & Ntormousi, arxiv 2211.03476, SB4, flow 3 */
v_Rob[0] = u0 * sin(k0 * p->x[0]) * cos(k0 * p->x[1]);
v_Rob[1] = -u0 * cos(k0 * p->x[0]) * sin(k0 * p->x[1]);
v_Rob[2] =
u0 * M_SQRT1_2 * (cos(2 * k0 * p->x[0]) + cos(2 * k0 * p->x[1]));
break;
case Roberts_flow_4:
/* Based on Brandenburg & Ntormousi, arxiv 2211.03476, SB4, flow 4 */
v_Rob[0] = u0 * sin(k0 * p->x[0]) * cos(k0 * p->x[1]);
v_Rob[1] = -u0 * cos(k0 * p->x[0]) * sin(k0 * p->x[1]);
v_Rob[2] = u0 * sin(k0 * p->x[0]);
break;
default:
v_Rob[0] = 0.f;
v_Rob[1] = 0.f;
v_Rob[2] = 0.f;
}
/* Force the velocity and possibly scale the z-direction */
xp->v_full[0] = v_Rob[0];
xp->v_full[1] = v_Rob[1];
xp->v_full[2] = v_Rob[2] * Vz_factor;
}
/**
* @brief Computes the time-step condition due to the forcing terms.
*
* Nothing to do here. --> Return FLT_MAX.
*
* @param time The current time.
* @param terms The properties of the forcing terms.
* @param phys_const The physical constants in internal units.
* @param p Pointer to the particle data.
* @param xp Pointer to the extended particle data.
*/
__attribute__((always_inline)) INLINE static float forcing_terms_timestep(
double time, const struct forcing_terms* terms,
const struct phys_const* phys_const, const struct part* p,
const struct xpart* xp) {
return FLT_MAX;
}
/**
* @brief Prints the properties of the forcing terms to stdout.
*
* @param terms The #forcing_terms properties of the run.
*/
static INLINE void forcing_terms_print(const struct forcing_terms* terms) {
message("Forcing terms is 'Roberts flow'. U0: %.5f / Vz factor: %.5f.",
terms->u0, terms->Vz_factor);
message("Forcing 'Roberts flow' Kind: %i .", terms->Flow_kind);
}
/**
* @brief Initialises the forcing term properties
*
* @param parameter_file The parsed parameter file
* @param phys_const Physical constants in internal units
* @param us The current internal system of units
* @param s The #space object.
* @param terms The forcing term properties to initialize
*/
static INLINE void forcing_terms_init(struct swift_params* parameter_file,
const struct phys_const* phys_const,
const struct unit_system* us,
const struct space* s,
struct forcing_terms* terms) {
terms->u0 = parser_get_param_double(parameter_file, "RobertsFlowForcing:u0");
terms->Vz_factor = parser_get_opt_param_float(
parameter_file, "RobertsFlowForcing:Vz_factor", 1.f);
terms->Flow_kind =
parser_get_param_int(parameter_file, "RobertsFlowForcing:Flow_kind");
terms->kv = parser_get_param_double(parameter_file, "RobertsFlowForcing:kv");
if (terms->Flow_kind > 4 || terms->Flow_kind < 1)
error(
"Error: Flow_kind variable can take integer values from [1,4] "
"interval.");
}
#endif /* SWIFT_FORCING_ROBERTS_FLOW_H */