/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2023 Matthieu Schaller (schaller@strw.leidenuniv.nl) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_FORCING_ROBERTS_FLOW_H #define SWIFT_FORCING_ROBERTS_FLOW_H /* Config parameters. */ #include /* Standard includes. */ #include /* Local includes. */ #include "error.h" #include "parser.h" #include "part.h" #include "physical_constants.h" #include "space.h" #include "units.h" /* Type of flow */ enum flow { Roberts_flow_1 = 1, Roberts_flow_2 = 2, Roberts_flow_3 = 3, Roberts_flow_4 = 4 }; /** * @brief Forcing Term Properties */ struct forcing_terms { /*! Reference velocity (internal units) */ float u0; /*! Velocity scaling along the z direction */ float Vz_factor; /*! Kind of RobertsFlow */ enum flow Flow_kind; /*! Wavenumber of the flow*/ float kv; }; /** * @brief Computes the forcing terms. * * Based on G.O.Roberts, Dynamo action of fluid motions with two-dimensional * periodicity, Royal Society, Feb. 3, 1972; * Tilgner & Brandenburg, 2008, MNRAS, 391, 1477; * Brandenburg & Ntormousi, arxiv 2211.03476. * This version differs from the paper by imposing the velocity directly rather * than by giving the particles an acceleration. * * @param time The current time. * @param terms The properties of the forcing terms. * @param s The #space we act on. * @param phys_const The physical constants in internal units. * @param p Pointer to the particle data. * @param xp Pointer to the extended particle data. */ __attribute__((always_inline)) INLINE static void forcing_terms_apply( const double time, const struct forcing_terms* terms, const struct space* s, const struct phys_const* phys_const, struct part* p, struct xpart* xp) { enum flow Flow_kind = terms->Flow_kind; const double L = s->dim[0]; const float u0 = terms->u0; const float Vz_factor = terms->Vz_factor; const double k0 = (2. * M_PI / L) * terms->kv; const double kf = M_SQRT2 * k0; double v_Rob[3]; /* Switching between different kinds of flows */ /* Here we use definitions based on Brandenburg & Ntormousi, arxiv 2211.03476, * SB3 and SB4 */ /* The difference between Roberts definitions and the definitions used here * are the following: Roberts worked in yz plane, we work in xy plane just for * convenience, so our formulas differ from Robets article by several * rotations. Theese rotations are equivalent to yzx -> xyz permutation. Also * Roberts cells are tilted 45 degrees and are sqrt(2) times larger We * normalize flow in such way that the rms velocity is u0 (when Vzfactor=1)*/ switch (Flow_kind) { case Roberts_flow_1: /* Based on Brandenburg & Ntormousi, arxiv 2211.03476, SB4, flow 1 */ v_Rob[0] = u0 * sin(k0 * p->x[0]) * cos(k0 * p->x[1]); v_Rob[1] = -u0 * cos(k0 * p->x[0]) * sin(k0 * p->x[1]); v_Rob[2] = u0 * M_SQRT2 * sin(k0 * p->x[0]) * sin(k0 * p->x[1]); break; case Roberts_flow_2: /* Based on Brandenburg & Ntormousi, arxiv 2211.03476, SB4, flow 2 */ v_Rob[0] = u0 * sin(k0 * p->x[0]) * cos(k0 * p->x[1]); v_Rob[1] = -u0 * cos(k0 * p->x[0]) * sin(k0 * p->x[1]); v_Rob[2] = u0 * M_SQRT2 * cos(k0 * p->x[0]) * cos(k0 * p->x[1]); break; case Roberts_flow_3: /* Based on Brandenburg & Ntormousi, arxiv 2211.03476, SB4, flow 3 */ v_Rob[0] = u0 * sin(k0 * p->x[0]) * cos(k0 * p->x[1]); v_Rob[1] = -u0 * cos(k0 * p->x[0]) * sin(k0 * p->x[1]); v_Rob[2] = u0 * M_SQRT1_2 * (cos(2 * k0 * p->x[0]) + cos(2 * k0 * p->x[1])); break; case Roberts_flow_4: /* Based on Brandenburg & Ntormousi, arxiv 2211.03476, SB4, flow 4 */ v_Rob[0] = u0 * sin(k0 * p->x[0]) * cos(k0 * p->x[1]); v_Rob[1] = -u0 * cos(k0 * p->x[0]) * sin(k0 * p->x[1]); v_Rob[2] = u0 * sin(k0 * p->x[0]); break; default: v_Rob[0] = 0.f; v_Rob[1] = 0.f; v_Rob[2] = 0.f; } /* Force the velocity and possibly scale the z-direction */ xp->v_full[0] = v_Rob[0]; xp->v_full[1] = v_Rob[1]; xp->v_full[2] = v_Rob[2] * Vz_factor; } /** * @brief Computes the time-step condition due to the forcing terms. * * Nothing to do here. --> Return FLT_MAX. * * @param time The current time. * @param terms The properties of the forcing terms. * @param phys_const The physical constants in internal units. * @param p Pointer to the particle data. * @param xp Pointer to the extended particle data. */ __attribute__((always_inline)) INLINE static float forcing_terms_timestep( double time, const struct forcing_terms* terms, const struct phys_const* phys_const, const struct part* p, const struct xpart* xp) { return FLT_MAX; } /** * @brief Prints the properties of the forcing terms to stdout. * * @param terms The #forcing_terms properties of the run. */ static INLINE void forcing_terms_print(const struct forcing_terms* terms) { message("Forcing terms is 'Roberts flow'. U0: %.5f / Vz factor: %.5f.", terms->u0, terms->Vz_factor); message("Forcing 'Roberts flow' Kind: %i .", terms->Flow_kind); } /** * @brief Initialises the forcing term properties * * @param parameter_file The parsed parameter file * @param phys_const Physical constants in internal units * @param us The current internal system of units * @param s The #space object. * @param terms The forcing term properties to initialize */ static INLINE void forcing_terms_init(struct swift_params* parameter_file, const struct phys_const* phys_const, const struct unit_system* us, const struct space* s, struct forcing_terms* terms) { terms->u0 = parser_get_param_double(parameter_file, "RobertsFlowForcing:u0"); terms->Vz_factor = parser_get_opt_param_float( parameter_file, "RobertsFlowForcing:Vz_factor", 1.f); terms->Flow_kind = parser_get_param_int(parameter_file, "RobertsFlowForcing:Flow_kind"); terms->kv = parser_get_param_double(parameter_file, "RobertsFlowForcing:kv"); if (terms->Flow_kind > 4 || terms->Flow_kind < 1) error( "Error: Flow_kind variable can take integer values from [1,4] " "interval."); } #endif /* SWIFT_FORCING_ROBERTS_FLOW_H */