/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 Matthieu Schaller (schaller@strw.leidenuniv.nl).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_ISOTHERMAL_EQUATION_OF_STATE_H
#define SWIFT_ISOTHERMAL_EQUATION_OF_STATE_H
/* Some standard headers. */
#include
/* Local headers. */
#include "adiabatic_index.h"
#include "common_io.h"
#include "inline.h"
#include "physical_constants.h"
extern struct eos_parameters eos;
/**
* @brief The parameters of the equation of state for the gas.
*/
struct eos_parameters {
/*! Thermal energy per unit mass */
float isothermal_internal_energy;
};
/**
* @brief Returns the internal energy given density and entropy
*
* Since we are using an isothermal EoS, the entropy and density values are
* ignored.
* Computes \f$u = u_{cst}\f$.
*
* @param density The density \f$\rho\f$.
* @param entropy The entropy \f$S\f$.
*/
__attribute__((always_inline)) INLINE static float
gas_internal_energy_from_entropy(float density, float entropy) {
return eos.isothermal_internal_energy;
}
/**
* @brief Returns the pressure given density and entropy
*
* Since we are using an isothermal EoS, the entropy value is ignored.
* Computes \f$P = (\gamma - 1)u_{cst}\rho\f$.
*
* @param density The density \f$\rho\f$.
* @param entropy The entropy \f$S\f$.
*/
__attribute__((always_inline)) INLINE static float gas_pressure_from_entropy(
float density, float entropy) {
return hydro_gamma_minus_one * eos.isothermal_internal_energy * density;
}
/**
* @brief Returns the entropy given density and pressure.
*
* Since we are using an isothermal EoS, the pressure value is ignored.
* Computes \f$A = (\gamma - 1)u_{cst}\rho^{-(\gamma-1)}\f$.
*
* @param density The density \f$\rho\f$.
* @param pressure The pressure \f$P\f$ (ignored).
* @return The entropy \f$A\f$.
*/
__attribute__((always_inline)) INLINE static float gas_entropy_from_pressure(
float density, float pressure) {
return hydro_gamma_minus_one * eos.isothermal_internal_energy *
pow_minus_gamma_minus_one(density);
}
/**
* @brief Returns the sound speed given density and entropy
*
* Since we are using an isothermal EoS, the entropy and density values are
* ignored.
* Computes \f$c = \sqrt{u_{cst} \gamma (\gamma-1)}\f$.
*
* @param density The density \f$\rho\f$.
* @param entropy The entropy \f$S\f$.
*/
__attribute__((always_inline)) INLINE static float gas_soundspeed_from_entropy(
float density, float entropy) {
return sqrtf(eos.isothermal_internal_energy * hydro_gamma *
hydro_gamma_minus_one);
}
/**
* @brief Returns the entropy given density and internal energy
*
* Since we are using an isothermal EoS, the energy value is ignored.
* Computes \f$S = \frac{(\gamma - 1)u_{cst}}{\rho^{\gamma-1}}\f$.
*
* @param density The density \f$\rho\f$
* @param u The internal energy \f$u\f$
*/
__attribute__((always_inline)) INLINE static float
gas_entropy_from_internal_energy(float density, float u) {
return hydro_gamma_minus_one * eos.isothermal_internal_energy *
pow_minus_gamma_minus_one(density);
}
/**
* @brief Returns the pressure given density and internal energy
*
* Since we are using an isothermal EoS, the energy value is ignored.
* Computes \f$P = (\gamma - 1)u_{cst}\rho\f$.
*
* @param density The density \f$\rho\f$
* @param u The internal energy \f$u\f$
*/
__attribute__((always_inline)) INLINE static float
gas_pressure_from_internal_energy(float density, float u) {
return hydro_gamma_minus_one * eos.isothermal_internal_energy * density;
}
/**
* @brief Returns the internal energy given density and pressure.
*
* Just returns the constant internal energy.
*
* @param density The density \f$\rho\f$ (ignored).
* @param pressure The pressure \f$P\f$ (ignored).
* @return The internal energy \f$u\f$ (which is constant).
*/
__attribute__((always_inline)) INLINE static float
gas_internal_energy_from_pressure(float density, float pressure) {
return eos.isothermal_internal_energy;
}
/**
* @brief Returns the sound speed given density and internal energy
*
* Since we are using an isothermal EoS, the energy and density values are
* ignored.
* Computes \f$c = \sqrt{u_{cst} \gamma (\gamma-1)}\f$.
*
* @param density The density \f$\rho\f$
* @param u The internal energy \f$u\f$
*/
__attribute__((always_inline)) INLINE static float
gas_soundspeed_from_internal_energy(float density, float u) {
return sqrtf(eos.isothermal_internal_energy * hydro_gamma *
hydro_gamma_minus_one);
}
/**
* @brief Returns the sound speed given density and pressure
*
* Since we are using an isothermal EoS, the pressure and density values are
* ignored.
* Computes \f$c = \sqrt{u_{cst} \gamma (\gamma-1)}\f$.
*
* @param density The density \f$\rho\f$
* @param P The pressure \f$P\f$
*/
__attribute__((always_inline)) INLINE static float gas_soundspeed_from_pressure(
float density, float P) {
return sqrtf(eos.isothermal_internal_energy * hydro_gamma *
hydro_gamma_minus_one);
}
/**
* @brief Initialize the eos parameters
*
* Read the constant internal energy from the parameter file.
*
* @param e The #eos_paramters.
* @param phys_const The physical constants in the internal unit system.
* @param us The internal unit system.
* @param params The parsed parameters.
*/
__attribute__((always_inline)) INLINE static void eos_init(
struct eos_parameters *e, const struct phys_const *phys_const,
const struct unit_system *us, struct swift_params *params) {
e->isothermal_internal_energy =
parser_get_param_float(params, "EoS:isothermal_internal_energy");
}
/**
* @brief Print the equation of state
*
* @param e The #eos_parameters
*/
__attribute__((always_inline)) INLINE static void eos_print(
const struct eos_parameters *e) {
message(
"Equation of state: Isothermal with internal energy "
"per unit mass set to %f.",
e->isothermal_internal_energy);
message("Adiabatic index gamma: %f.", hydro_gamma);
}
#if defined(HAVE_HDF5)
/**
* @brief Write equation of state information to the snapshot
*
* @param h_grpsph The HDF5 group in which to write
* @param e The #eos_parameters
*/
__attribute__((always_inline)) INLINE static void eos_print_snapshot(
hid_t h_grpsph, const struct eos_parameters *e) {
io_write_attribute_f(h_grpsph, "Adiabatic index", hydro_gamma);
io_write_attribute_s(h_grpsph, "Equation of state", "Isothermal gas");
io_write_attribute_f(h_grpsph, "Thermal energy per unit mass",
e->isothermal_internal_energy);
}
#endif
#endif /* SWIFT_ISOTHERMAL_EQUATION_OF_STATE_H */