/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2016 Matthieu Schaller (schaller@strw.leidenuniv.nl). * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_IDEAL_GAS_EQUATION_OF_STATE_H #define SWIFT_IDEAL_GAS_EQUATION_OF_STATE_H /* Some standard headers. */ #include /* Local headers. */ #include "adiabatic_index.h" #include "common_io.h" #include "inline.h" #include "physical_constants.h" extern struct eos_parameters eos; /** * @brief The parameters of the equation of state for the gas. * * This equation of state is parameter-free. */ struct eos_parameters {}; /** * @brief Returns the internal energy given density and entropy * * Computes \f$u = \frac{A\rho^{\gamma-1} }{\gamma - 1}\f$. * * @param density The density \f$\rho\f$. * @param entropy The entropy \f$A\f$. */ __attribute__((always_inline, const)) INLINE static float gas_internal_energy_from_entropy(float density, float entropy) { return entropy * pow_gamma_minus_one(density) * hydro_one_over_gamma_minus_one; } /** * @brief Returns the pressure given density and entropy * * Computes \f$P = A\rho^\gamma\f$. * * @param density The density \f$\rho\f$. * @param entropy The entropy \f$A\f$. */ __attribute__((always_inline, const)) INLINE static float gas_pressure_from_entropy(float density, float entropy) { return entropy * pow_gamma(density); } /** * @brief Returns the entropy given density and pressure. * * Computes \f$A = \frac{P}{\rho^-\gamma}\f$. * * @param density The density \f$\rho\f$. * @param pressure The pressure \f$P\f$. * @return The entropy \f$A\f$. */ __attribute__((always_inline, const)) INLINE static float gas_entropy_from_pressure(float density, float pressure) { return pressure * pow_minus_gamma(density); } /** * @brief Returns the sound speed given density and entropy * * Computes \f$c = \sqrt{\gamma A \rho^{\gamma-1}}\f$. * * @param density The density \f$\rho\f$. * @param entropy The entropy \f$A\f$. */ __attribute__((always_inline, const)) INLINE static float gas_soundspeed_from_entropy(float density, float entropy) { return sqrtf(hydro_gamma * pow_gamma_minus_one(density) * entropy); } /** * @brief Returns the entropy given density and internal energy * * Computes \f$A = \frac{(\gamma - 1)u}{\rho^{\gamma-1}}\f$. * * @param density The density \f$\rho\f$ * @param u The internal energy \f$u\f$ */ __attribute__((always_inline, const)) INLINE static float gas_entropy_from_internal_energy(float density, float u) { return hydro_gamma_minus_one * u * pow_minus_gamma_minus_one(density); } /** * @brief Returns the pressure given density and internal energy * * Computes \f$P = (\gamma - 1)u\rho\f$. * * @param density The density \f$\rho\f$ * @param u The internal energy \f$u\f$ */ __attribute__((always_inline, const)) INLINE static float gas_pressure_from_internal_energy(float density, float u) { return hydro_gamma_minus_one * u * density; } /** * @brief Returns the internal energy given density and pressure. * * Computes \f$u = \frac{1}{\gamma - 1}\frac{P}{\rho}\f$. * * @param density The density \f$\rho\f$. * @param pressure The pressure \f$P\f$. * @return The internal energy \f$u\f$. */ __attribute__((always_inline, const)) INLINE static float gas_internal_energy_from_pressure(float density, float pressure) { return hydro_one_over_gamma_minus_one * pressure / density; } /** * @brief Returns the sound speed given density and internal energy * * Computes \f$c = \sqrt{\gamma (\gamma - 1) u }\f$. * * @param density The density \f$\rho\f$ * @param u The internal energy \f$u\f$ */ __attribute__((always_inline, const)) INLINE static float gas_soundspeed_from_internal_energy(float density, float u) { return sqrtf(u * hydro_gamma * hydro_gamma_minus_one); } /** * @brief Returns the sound speed given density and pressure * * Computes \f$c = \sqrt{\frac{\gamma P}{\rho} }\f$. * * @param density The density \f$\rho\f$ * @param P The pressure \f$P\f$ */ __attribute__((always_inline, const)) INLINE static float gas_soundspeed_from_pressure(float density, float P) { return sqrtf(hydro_gamma * P / density); } /** * @brief Initialize the eos parameters * * Nothing to do here since this EoS is parameter-free. * * @param e The #eos_parameters. * @param phys_const The physical constants in the internal unit system. * @param us The internal unit system. * @param params The parsed parameters. */ INLINE static void eos_init(struct eos_parameters *e, const struct phys_const *phys_const, const struct unit_system *us, struct swift_params *params) {} /** * @brief Print the equation of state * * @param e The #eos_parameters */ INLINE static void eos_print(const struct eos_parameters *e) { message("Equation of state: Ideal gas."); message("Adiabatic index gamma: %f.", hydro_gamma); } #if defined(HAVE_HDF5) /** * @brief Write equation of state information to the snapshot * * @param h_grpsph The HDF5 group in which to write * @param e The #eos_parameters */ INLINE static void eos_print_snapshot(hid_t h_grpsph, const struct eos_parameters *e) { io_write_attribute_f(h_grpsph, "Adiabatic index", hydro_gamma); io_write_attribute_s(h_grpsph, "Equation of state", "Ideal gas"); } #endif #endif /* SWIFT_IDEAL_GAS_EQUATION_OF_STATE_H */