/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2017 Matthieu Schaller (schaller@strw.leidenuniv.nl)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_COOLING_PS2020_IO_H
#define SWIFT_COOLING_PS2020_IO_H
/* Config parameters. */
#include
/* Local includes */
#include "cooling.h"
#include "engine.h"
#include "io_properties.h"
#ifdef HAVE_HDF5
/**
* @brief Writes the current model of cooling to the file.
*
* @param h_grp The HDF5 group in which to write
* @param h_grp_columns The HDF5 group containing named columns
* @param cooling The #cooling_function_data
*/
__attribute__((always_inline)) INLINE static void cooling_write_flavour(
hid_t h_grp, hid_t h_grp_columns,
const struct cooling_function_data* cooling) {
io_write_attribute_s(h_grp, "Cooling Model", "PS2020");
const int number_of_species = 3;
const int species_name_length = 4;
char species_names[number_of_species][species_name_length];
sprintf(species_names[0], "%s", "HI");
sprintf(species_names[1], "%s", "HII");
sprintf(species_names[2], "%s", "H2");
/* Add the species names to the named columns */
hsize_t dims[1] = {number_of_species};
hid_t type = H5Tcopy(H5T_C_S1);
H5Tset_size(type, species_name_length);
hid_t space = H5Screate_simple(1, dims, NULL);
hid_t dset = H5Dcreate(h_grp_columns, "SpeciesFractions", type, space,
H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
H5Dwrite(dset, type, H5S_ALL, H5S_ALL, H5P_DEFAULT, species_names[0]);
H5Dclose(dset);
H5Tclose(type);
H5Sclose(space);
}
#endif
INLINE static void convert_part_T(const struct engine* e, const struct part* p,
const struct xpart* xp, float* ret) {
ret[0] = cooling_get_temperature(e->physical_constants, e->hydro_properties,
e->internal_units, e->cosmology,
e->cooling_func, p, xp);
}
INLINE static void convert_part_sub_T(const struct engine* e,
const struct part* p,
const struct xpart* xp, float* ret) {
ret[0] = cooling_get_particle_subgrid_temperature(
e->internal_units, e->physical_constants, e->cosmology,
e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp);
}
INLINE static void convert_part_sub_rho(const struct engine* e,
const struct part* p,
const struct xpart* xp, float* ret) {
ret[0] = cooling_get_particle_subgrid_density(
e->internal_units, e->physical_constants, e->cosmology,
e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp);
}
INLINE static void convert_part_sub_species_frac(const struct engine* e,
const struct part* p,
const struct xpart* xp,
float* ret) {
ret[0] = cooling_get_particle_subgrid_HI_fraction(
e->internal_units, e->physical_constants, e->cosmology,
e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp);
ret[1] = cooling_get_particle_subgrid_HII_fraction(
e->internal_units, e->physical_constants, e->cosmology,
e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp);
ret[2] = cooling_get_particle_subgrid_H2_fraction(
e->internal_units, e->physical_constants, e->cosmology,
e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp);
/* normalize the sum of the hydrogen fractions to 1 */
const float sum = ret[0] + ret[1] + 2. * ret[2];
ret[0] /= sum;
ret[1] /= sum;
ret[2] /= sum;
}
INLINE static void convert_part_HI_mass(const struct engine* e,
const struct part* p,
const struct xpart* xp, float* ret) {
const float X_H =
chemistry_get_metal_mass_fraction_for_cooling(p)[chemistry_element_H];
const float HI_frac = cooling_get_particle_subgrid_HI_fraction(
e->internal_units, e->physical_constants, e->cosmology,
e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp);
*ret = hydro_get_mass(p) * X_H * HI_frac;
}
INLINE static void convert_part_H2_mass(const struct engine* e,
const struct part* p,
const struct xpart* xp, float* ret) {
const float X_H =
chemistry_get_metal_mass_fraction_for_cooling(p)[chemistry_element_H];
const float H2_frac = cooling_get_particle_subgrid_H2_fraction(
e->internal_units, e->physical_constants, e->cosmology,
e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp);
*ret = hydro_get_mass(p) * X_H * H2_frac * 2.f;
}
INLINE static void convert_part_e_density(const struct engine* e,
const struct part* p,
const struct xpart* xp, double* ret) {
*ret = cooling_get_electron_density(e->physical_constants,
e->hydro_properties, e->internal_units,
e->cosmology, e->cooling_func, p, xp);
}
INLINE static void convert_part_y_compton(const struct engine* e,
const struct part* p,
const struct xpart* xp, double* ret) {
*ret = cooling_get_ycompton(e->physical_constants, e->hydro_properties,
e->internal_units, e->cosmology, e->cooling_func,
p, xp);
}
/**
* @brief Specifies which particle fields to write to a dataset
*
* @param parts The particle array.
* @param xparts The extended data particle array.
* @param list The list of i/o properties to write.
*
* @return Returns the number of fields to write.
*/
__attribute__((always_inline)) INLINE static int cooling_write_particles(
const struct part* parts, const struct xpart* xparts,
struct io_props* list) {
list[0] = io_make_output_field_convert_part(
"Temperatures", FLOAT, 1, UNIT_CONV_TEMPERATURE, 0.f, parts, xparts,
convert_part_T, "Temperatures of the gas particles");
list[1] = io_make_physical_output_field_convert_part(
"SubgridTemperatures", FLOAT, 1, UNIT_CONV_TEMPERATURE, 0.f, parts,
xparts, /*can convert to comoving=*/1, convert_part_sub_T,
"The subgrid temperatures if the particles are within deltaT of the "
"entropy floor the subgrid temperature is calculated assuming a "
"pressure equilibrium on the entropy floor, if the particles are "
"above deltaT of the entropy floor the subgrid temperature is "
"identical to the SPH temperature.");
list[2] = io_make_physical_output_field_convert_part(
"SubgridPhysicalDensities", FLOAT, 1, UNIT_CONV_DENSITY, -3.f, parts,
xparts, /*can convert to comoving=*/1, convert_part_sub_rho,
"The subgrid physical density if the particles are within deltaT of the "
"entropy floor the subgrid density is calculated assuming a pressure "
"equilibrium on the entropy floor, if the particles are above deltaT "
"of the entropy floor the subgrid density is identical to the "
"physical SPH density.");
list[3] = io_make_output_field_convert_part(
"SpeciesFractions", FLOAT, 3, UNIT_CONV_NO_UNITS, 0.f, parts, xparts,
convert_part_sub_species_frac,
"Fractions of neutral, ionized and molecular hydrogen: [nHI/nH, nHII/nH, "
"nH2/nH], assuming equilibrium "
"tables. If the particles are within deltaT of the entropy floor the "
"fractions are calculated using the subgrid quantities, i.e. assuming a "
"pressure equilibrium on the entropy floor. If the particles are "
"above deltaT of the entropy floor, the normal hydro quantities are "
"used.");
list[4] = io_make_output_field_convert_part(
"AtomicHydrogenMasses", FLOAT, 1, UNIT_CONV_MASS, 0.f, parts, xparts,
convert_part_HI_mass,
"Atomic hydrogen masses containted in the particles. This quantity is "
"obtained from the cooling tables and, if the particle is on the entropy "
"floor, by extrapolating to the equilibrium curve assuming constant "
"pressure.");
list[5] = io_make_output_field_convert_part(
"MolecularHydrogenMasses", FLOAT, 1, UNIT_CONV_MASS, 0.f, parts, xparts,
convert_part_H2_mass,
"Molecular hydrogen masses containted in the particles. This quantity is "
"obtained from the cooling tables and, if the particle is on the entropy "
"floor, by extrapolating to the equilibrium curve assuming constant "
"pressure.");
list[6] = io_make_physical_output_field_convert_part(
"ElectronNumberDensities", DOUBLE, 1, UNIT_CONV_NUMBER_DENSITY, -3.f,
parts, xparts, /*can convert to comoving=*/1, convert_part_e_density,
"Electron number densities in the physical frame computed based on the "
"cooling tables. This is 0 for star-forming particles.");
list[7] = io_make_physical_output_field_convert_part(
"ComptonYParameters", DOUBLE, 1, UNIT_CONV_AREA, 0.f, parts, xparts,
/*can convert to comoving=*/0, convert_part_y_compton,
"Compton y parameters in the physical frame computed based on the "
"cooling tables. This is 0 for star-forming particles.");
return 8;
}
#endif /* SWIFT_COOLING_PS2020_IO_H */