/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2017 Matthieu Schaller (schaller@strw.leidenuniv.nl) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_COOLING_PS2020_IO_H #define SWIFT_COOLING_PS2020_IO_H /* Config parameters. */ #include /* Local includes */ #include "cooling.h" #include "engine.h" #include "io_properties.h" #ifdef HAVE_HDF5 /** * @brief Writes the current model of cooling to the file. * * @param h_grp The HDF5 group in which to write * @param h_grp_columns The HDF5 group containing named columns * @param cooling The #cooling_function_data */ __attribute__((always_inline)) INLINE static void cooling_write_flavour( hid_t h_grp, hid_t h_grp_columns, const struct cooling_function_data* cooling) { io_write_attribute_s(h_grp, "Cooling Model", "PS2020"); const int number_of_species = 3; const int species_name_length = 4; char species_names[number_of_species][species_name_length]; sprintf(species_names[0], "%s", "HI"); sprintf(species_names[1], "%s", "HII"); sprintf(species_names[2], "%s", "H2"); /* Add the species names to the named columns */ hsize_t dims[1] = {number_of_species}; hid_t type = H5Tcopy(H5T_C_S1); H5Tset_size(type, species_name_length); hid_t space = H5Screate_simple(1, dims, NULL); hid_t dset = H5Dcreate(h_grp_columns, "SpeciesFractions", type, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); H5Dwrite(dset, type, H5S_ALL, H5S_ALL, H5P_DEFAULT, species_names[0]); H5Dclose(dset); H5Tclose(type); H5Sclose(space); } #endif INLINE static void convert_part_T(const struct engine* e, const struct part* p, const struct xpart* xp, float* ret) { ret[0] = cooling_get_temperature(e->physical_constants, e->hydro_properties, e->internal_units, e->cosmology, e->cooling_func, p, xp); } INLINE static void convert_part_sub_T(const struct engine* e, const struct part* p, const struct xpart* xp, float* ret) { ret[0] = cooling_get_particle_subgrid_temperature( e->internal_units, e->physical_constants, e->cosmology, e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp); } INLINE static void convert_part_sub_rho(const struct engine* e, const struct part* p, const struct xpart* xp, float* ret) { ret[0] = cooling_get_particle_subgrid_density( e->internal_units, e->physical_constants, e->cosmology, e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp); } INLINE static void convert_part_sub_species_frac(const struct engine* e, const struct part* p, const struct xpart* xp, float* ret) { ret[0] = cooling_get_particle_subgrid_HI_fraction( e->internal_units, e->physical_constants, e->cosmology, e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp); ret[1] = cooling_get_particle_subgrid_HII_fraction( e->internal_units, e->physical_constants, e->cosmology, e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp); ret[2] = cooling_get_particle_subgrid_H2_fraction( e->internal_units, e->physical_constants, e->cosmology, e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp); /* normalize the sum of the hydrogen fractions to 1 */ const float sum = ret[0] + ret[1] + 2. * ret[2]; ret[0] /= sum; ret[1] /= sum; ret[2] /= sum; } INLINE static void convert_part_HI_mass(const struct engine* e, const struct part* p, const struct xpart* xp, float* ret) { const float X_H = chemistry_get_metal_mass_fraction_for_cooling(p)[chemistry_element_H]; const float HI_frac = cooling_get_particle_subgrid_HI_fraction( e->internal_units, e->physical_constants, e->cosmology, e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp); *ret = hydro_get_mass(p) * X_H * HI_frac; } INLINE static void convert_part_H2_mass(const struct engine* e, const struct part* p, const struct xpart* xp, float* ret) { const float X_H = chemistry_get_metal_mass_fraction_for_cooling(p)[chemistry_element_H]; const float H2_frac = cooling_get_particle_subgrid_H2_fraction( e->internal_units, e->physical_constants, e->cosmology, e->hydro_properties, e->entropy_floor, e->cooling_func, p, xp); *ret = hydro_get_mass(p) * X_H * H2_frac * 2.f; } INLINE static void convert_part_e_density(const struct engine* e, const struct part* p, const struct xpart* xp, double* ret) { *ret = cooling_get_electron_density(e->physical_constants, e->hydro_properties, e->internal_units, e->cosmology, e->cooling_func, p, xp); } INLINE static void convert_part_y_compton(const struct engine* e, const struct part* p, const struct xpart* xp, double* ret) { *ret = cooling_get_ycompton(e->physical_constants, e->hydro_properties, e->internal_units, e->cosmology, e->cooling_func, p, xp); } /** * @brief Specifies which particle fields to write to a dataset * * @param parts The particle array. * @param xparts The extended data particle array. * @param list The list of i/o properties to write. * * @return Returns the number of fields to write. */ __attribute__((always_inline)) INLINE static int cooling_write_particles( const struct part* parts, const struct xpart* xparts, struct io_props* list) { list[0] = io_make_output_field_convert_part( "Temperatures", FLOAT, 1, UNIT_CONV_TEMPERATURE, 0.f, parts, xparts, convert_part_T, "Temperatures of the gas particles"); list[1] = io_make_physical_output_field_convert_part( "SubgridTemperatures", FLOAT, 1, UNIT_CONV_TEMPERATURE, 0.f, parts, xparts, /*can convert to comoving=*/1, convert_part_sub_T, "The subgrid temperatures if the particles are within deltaT of the " "entropy floor the subgrid temperature is calculated assuming a " "pressure equilibrium on the entropy floor, if the particles are " "above deltaT of the entropy floor the subgrid temperature is " "identical to the SPH temperature."); list[2] = io_make_physical_output_field_convert_part( "SubgridPhysicalDensities", FLOAT, 1, UNIT_CONV_DENSITY, -3.f, parts, xparts, /*can convert to comoving=*/1, convert_part_sub_rho, "The subgrid physical density if the particles are within deltaT of the " "entropy floor the subgrid density is calculated assuming a pressure " "equilibrium on the entropy floor, if the particles are above deltaT " "of the entropy floor the subgrid density is identical to the " "physical SPH density."); list[3] = io_make_output_field_convert_part( "SpeciesFractions", FLOAT, 3, UNIT_CONV_NO_UNITS, 0.f, parts, xparts, convert_part_sub_species_frac, "Fractions of neutral, ionized and molecular hydrogen: [nHI/nH, nHII/nH, " "nH2/nH], assuming equilibrium " "tables. If the particles are within deltaT of the entropy floor the " "fractions are calculated using the subgrid quantities, i.e. assuming a " "pressure equilibrium on the entropy floor. If the particles are " "above deltaT of the entropy floor, the normal hydro quantities are " "used."); list[4] = io_make_output_field_convert_part( "AtomicHydrogenMasses", FLOAT, 1, UNIT_CONV_MASS, 0.f, parts, xparts, convert_part_HI_mass, "Atomic hydrogen masses containted in the particles. This quantity is " "obtained from the cooling tables and, if the particle is on the entropy " "floor, by extrapolating to the equilibrium curve assuming constant " "pressure."); list[5] = io_make_output_field_convert_part( "MolecularHydrogenMasses", FLOAT, 1, UNIT_CONV_MASS, 0.f, parts, xparts, convert_part_H2_mass, "Molecular hydrogen masses containted in the particles. This quantity is " "obtained from the cooling tables and, if the particle is on the entropy " "floor, by extrapolating to the equilibrium curve assuming constant " "pressure."); list[6] = io_make_physical_output_field_convert_part( "ElectronNumberDensities", DOUBLE, 1, UNIT_CONV_NUMBER_DENSITY, -3.f, parts, xparts, /*can convert to comoving=*/1, convert_part_e_density, "Electron number densities in the physical frame computed based on the " "cooling tables. This is 0 for star-forming particles."); list[7] = io_make_physical_output_field_convert_part( "ComptonYParameters", DOUBLE, 1, UNIT_CONV_AREA, 0.f, parts, xparts, /*can convert to comoving=*/0, convert_part_y_compton, "Compton y parameters in the physical frame computed based on the " "cooling tables. This is 0 for star-forming particles."); return 8; } #endif /* SWIFT_COOLING_PS2020_IO_H */