/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2023 Yolan Uyttenhove (yolan.uyttenhove@ugent.be) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_CHEMISTRY_GEAR_ADDITIONS_H #define SWIFT_CHEMISTRY_GEAR_ADDITIONS_H /** * @brief Resets the metal mass fluxes for schemes that use them. * * @param p The particle to act upon. */ __attribute__((always_inline)) INLINE static void chemistry_reset_mass_fluxes( struct part* restrict p) { for (int i = 0; i < GEAR_CHEMISTRY_ELEMENT_COUNT; i++) { p->chemistry_data.metal_mass_fluxes[i] = 0.f; } } /** * @brief Extra operations done during the kick. This needs to be * done before the particle mass is updated in the hydro_kick_extra. * * @param p Particle to act upon. * @param dt_therm Thermal energy time-step @f$\frac{dt}{a^2}@f$. * @param dt_grav Gravity time-step @f$\frac{dt}{a}@f$. * @param dt_hydro Hydro acceleration time-step * @f$\frac{dt}{a^{3(\gamma{}-1)}}@f$. * @param dt_kick_corr Gravity correction time-step @f$adt@f$. * @param cosmo Cosmology. * @param hydro_props Additional hydro properties. */ __attribute__((always_inline)) INLINE static void chemistry_kick_extra( struct part* p, float dt_therm, float dt_grav, float dt_hydro, float dt_kick_corr, const struct cosmology* cosmo, const struct hydro_props* hydro_props) { /* For hydro schemes that exchange mass fluxes between the particles, * we want to advect the metals. */ if (p->flux.dt > 0.) { /* Check for vacuum? */ if (p->conserved.mass + p->flux.mass <= 0.) { for (int i = 0; i < GEAR_CHEMISTRY_ELEMENT_COUNT; i++) { p->chemistry_data.metal_mass[i] = 0.; p->chemistry_data.smoothed_metal_mass_fraction[i] = 0.; } chemistry_reset_mass_fluxes(p); /* Nothing left to do */ return; } /* apply the metal mass fluxes and reset them */ const double* metal_fluxes = p->chemistry_data.metal_mass_fluxes; for (int i = 0; i < GEAR_CHEMISTRY_ELEMENT_COUNT; i++) { p->chemistry_data.metal_mass[i] = fmax(p->chemistry_data.metal_mass[i] + metal_fluxes[i], 0.); } #ifdef SWIFT_DEBUG_CHECKS double sum = 0.; for (int i = 0; i < GEAR_CHEMISTRY_ELEMENT_COUNT - 1; i++) { sum += p->chemistry_data.metal_mass[i]; } const double total_metal_mass = p->chemistry_data.metal_mass[GEAR_CHEMISTRY_ELEMENT_COUNT - 1]; if (sum > total_metal_mass) error( "Sum of element-wise metal masses grew larger than total metal " "mass!"); if (total_metal_mass > p->conserved.mass + p->flux.mass) error("Total metal mass grew larger than the particle mass!"); #endif chemistry_reset_mass_fluxes(p); } } /** * @brief update metal mass fluxes between two interacting particles during * hydro_iact_(non)sym(...) calls. * * Metals are advected. I.e. a particle loses metals according to its own * metal mass fractions and gains mass according to the neighboring particle's * mass fractions. * * @param pi first interacting particle * @param pj second interacting particle * @param mass_flux the mass flux between these two particles. * @param flux_dt the time-step over which the fluxes are exchanged * @param mode 0: non-symmetric interaction, update i only. 1: symmetric * interaction. **/ __attribute__((always_inline)) INLINE static void runner_iact_chemistry_fluxes( struct part* restrict pi, struct part* restrict pj, float mass_flux, float flux_dt, int mode) { const double mass_flux_integrated = mass_flux * flux_dt; const float mi = pi->conserved.mass; const float mi_inv = mi > 0 ? 1.f / mi : 0.f; const float mj = pj->conserved.mass; const float mj_inv = mj > 0 ? 1.f / mj : 0.f; /* Convention: a positive mass flux means that pi is losing said mass and pj * is gaining it. */ if (mass_flux > 0.f) { /* pi is losing mass */ for (int i = 0; i < GEAR_CHEMISTRY_ELEMENT_COUNT; i++) { pi->chemistry_data.metal_mass_fluxes[i] -= mass_flux_integrated * pi->chemistry_data.metal_mass[i] * mi_inv; } } else { /* pi is gaining mass: */ for (int i = 0; i < GEAR_CHEMISTRY_ELEMENT_COUNT; i++) { pi->chemistry_data.metal_mass_fluxes[i] -= mass_flux_integrated * pj->chemistry_data.metal_mass[i] * mj_inv; } } /* update pj as well, even if it is inactive (flux.dt < 0.) */ if (mode == 1 || pj->flux.dt < 0.f) { if (mass_flux > 0.f) { /* pj is gaining mass */ for (int i = 0; i < GEAR_CHEMISTRY_ELEMENT_COUNT; i++) { pj->chemistry_data.metal_mass_fluxes[i] += mass_flux_integrated * pi->chemistry_data.metal_mass[i] * mi_inv; } } else { /* pj is losing mass */ for (int i = 0; i < GEAR_CHEMISTRY_ELEMENT_COUNT; i++) { pj->chemistry_data.metal_mass_fluxes[i] += mass_flux_integrated * pj->chemistry_data.metal_mass[i] * mj_inv; } } } } #endif // SWIFT_CHEMISTRY_GEAR_ADDITIONS_H