############################################################################### # This file is part of SWIFT. # Copyright (c) 2020 loic hausammann (loic.hausammann@epfl.ch) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . # ############################################################################## import h5py import numpy as np # Generates a SWIFT IC file with a constant density and pressure # Parameters periodic = 1 # 1 For periodic box boxSize = 200 # 200 kiloparsec rho = 200 # Density in code units T = 3000 # Initial Temperature gamma = 5.0 / 3.0 # Gas adiabatic index fileName = "pressureFloor.hdf5" # --------------------------------------------------- # defines some constants # need to be changed in plotTemperature.py too h_frac = 0.76 mu = 4.0 / (1.0 + 3.0 * h_frac) m_h_cgs = 1.67e-24 k_b_cgs = 1.38e-16 # defines units unit_length = 3.0857e21 # kpc unit_mass = 2.0e33 # solar mass unit_time = 3.0857e16 # ~ Gyr # Read id, position and h from glass glass = h5py.File("glassCube_16.hdf5", "r") ids = glass["/PartType0/ParticleIDs"][:] pos = glass["/PartType0/Coordinates"][:, :] * boxSize h = glass["/PartType0/SmoothingLength"][:] * boxSize # Compute basic properties numPart = np.size(pos) // 3 mass = boxSize ** 3 * rho / numPart internalEnergy = k_b_cgs * T * mu / ((gamma - 1.0) * m_h_cgs) internalEnergy *= (unit_time / unit_length) ** 2 # File f = h5py.File(fileName, "w") # Header grp = f.create_group("/Header") grp.attrs["BoxSize"] = boxSize grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0] grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0] grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0] grp.attrs["Time"] = 0.0 grp.attrs["NumFilesPerSnapshot"] = 1 grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] grp.attrs["Flag_Entropy_ICs"] = 0 # Runtime parameters grp = f.create_group("/RuntimePars") grp.attrs["PeriodicBoundariesOn"] = periodic # Units grp = f.create_group("/Units") grp.attrs["Unit length in cgs (U_L)"] = unit_length grp.attrs["Unit mass in cgs (U_M)"] = unit_mass grp.attrs["Unit time in cgs (U_t)"] = unit_time grp.attrs["Unit current in cgs (U_I)"] = 1.0 grp.attrs["Unit temperature in cgs (U_T)"] = 1.0 # Particle group grp = f.create_group("/PartType0") v = np.zeros((numPart, 3)) ds = grp.create_dataset("Velocities", (numPart, 3), "f") ds[()] = v m = np.full((numPart, 1), mass) ds = grp.create_dataset("Masses", (numPart, 1), "f") ds[()] = m h = np.reshape(h, (numPart, 1)) ds = grp.create_dataset("SmoothingLength", (numPart, 1), "f") ds[()] = h u = np.full((numPart, 1), internalEnergy) ds = grp.create_dataset("InternalEnergy", (numPart, 1), "f") ds[()] = u ids = np.reshape(ids, (numPart, 1)) ds = grp.create_dataset("ParticleIDs", (numPart, 1), "L") ds[()] = ids ds = grp.create_dataset("Coordinates", (numPart, 3), "d") ds[()] = pos f.close() print("Initial condition generated")