############################################################################### # This file is part of SWIFT. # Copyright (c) 2015 Bert Vandenbroucke (bert.vandenbroucke@ugent.be) # Matthieu Schaller (schaller@strw.leidenuniv.nl) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . # ############################################################################## import matplotlib matplotlib.use("Agg") from pylab import * from scipy import stats import h5py import numpy as np import glob import os.path def find_indices(a, b): result = np.zeros(len(b)) for i in range(len(b)): result[i] = ((np.where(a == b[i]))[0])[0] return result # Plot parameters params = { "axes.labelsize": 10, "axes.titlesize": 10, "font.size": 12, "legend.fontsize": 12, "xtick.labelsize": 10, "ytick.labelsize": 10, "text.usetex": True, "figure.figsize": (9.90, 6.45), "figure.subplot.left": 0.1, "figure.subplot.right": 0.99, "figure.subplot.bottom": 0.1, "figure.subplot.top": 0.95, "figure.subplot.wspace": 0.2, "figure.subplot.hspace": 0.2, "lines.markersize": 6, "lines.linewidth": 3.0, } rcParams.update(params) # Number of snapshots and elements newest_snap_name = max(glob.glob("output_*.hdf5"), key=os.path.getctime) n_snapshots = int(newest_snap_name.replace("output_", "").replace(".hdf5", "")) + 1 n_elements = 9 # Read the simulation data sim = h5py.File("output_0000.hdf5", "r") boxSize = sim["/Header"].attrs["BoxSize"][0] time = sim["/Header"].attrs["Time"][0] scheme = sim["/HydroScheme"].attrs["Scheme"] kernel = sim["/HydroScheme"].attrs["Kernel function"] neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"] eta = sim["/HydroScheme"].attrs["Kernel eta"] git = sim["Code"].attrs["Git Revision"] stellar_mass = sim["/PartType4/Masses"][0] # Units unit_length_in_cgs = sim["/Units"].attrs["Unit length in cgs (U_L)"] unit_mass_in_cgs = sim["/Units"].attrs["Unit mass in cgs (U_M)"] unit_time_in_cgs = sim["/Units"].attrs["Unit time in cgs (U_t)"] unit_temp_in_cgs = sim["/Units"].attrs["Unit temperature in cgs (U_T)"] unit_vel_in_cgs = unit_length_in_cgs / unit_time_in_cgs unit_energy_in_cgs = unit_mass_in_cgs * unit_vel_in_cgs * unit_vel_in_cgs unit_length_in_si = 0.01 * unit_length_in_cgs unit_mass_in_si = 0.001 * unit_mass_in_cgs unit_time_in_si = unit_time_in_cgs unit_density_in_cgs = unit_mass_in_cgs * unit_length_in_cgs ** -3 unit_pressure_in_cgs = unit_mass_in_cgs / unit_length_in_cgs * unit_time_in_cgs ** -2 unit_int_energy_in_cgs = unit_energy_in_cgs / unit_mass_in_cgs unit_entropy_in_cgs = unit_energy_in_cgs / unit_temp_in_cgs Gyr_in_cgs = 3.155e16 Msun_in_cgs = 1.989e33 box_energy = zeros(n_snapshots) box_mass = zeros(n_snapshots) box_star_mass = zeros(n_snapshots) box_metal_mass = zeros(n_snapshots) element_mass = zeros((n_snapshots, n_elements)) t = zeros(n_snapshots) # Read data from snapshots for i in range(n_snapshots): print("reading snapshot " + str(i)) # Read the simulation data sim = h5py.File("output_%04d.hdf5" % i, "r") t[i] = sim["/Header"].attrs["Time"][0] # ids = sim["/PartType0/ParticleIDs"][:] masses = sim["/PartType0/Masses"][:] box_mass[i] = np.sum(masses) star_masses = sim["/PartType4/Masses"][:] box_star_mass[i] = np.sum(star_masses) metallicities = sim["/PartType0/Metallicities"][:] box_metal_mass[i] = np.sum(metallicities * masses) internal_energies = sim["/PartType0/InternalEnergies"][:] box_energy[i] = np.sum(masses * internal_energies) # Plot the interesting quantities figure() # Box mass -------------------------------- subplot(221) plot( t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_mass[1:] - box_mass[0]) * unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color="k", marker="*", ms=0.5, label="swift", ) xlabel("${\\rm{Time}} (Gyr)$", labelpad=0) ylabel("Change in total gas particle mass (Msun)", labelpad=2) ticklabel_format(style="sci", axis="y", scilimits=(0, 0)) # Box metal mass -------------------------------- subplot(222) plot( t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_metal_mass[1:] - box_metal_mass[0]) * unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color="k", ms=0.5, label="swift", ) xlabel("${\\rm{Time}} (Gyr)$", labelpad=0) ylabel("Change in total metal mass of gas particles (Msun)", labelpad=2) ticklabel_format(style="sci", axis="y", scilimits=(0, 0)) # Box energy -------------------------------- subplot(223) plot( t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_energy[1:] - box_energy[0]) * unit_energy_in_cgs, linewidth=0.5, color="k", ms=0.5, label="swift", ) xlabel("${\\rm{Time}} (Gyr)$", labelpad=0) ylabel("Change in total energy of gas particles (erg)", labelpad=2) ticklabel_format(style="sci", axis="y", scilimits=(0, 0)) # Box mass -------------------------------- subplot(224) plot( t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_mass[1:] - box_mass[0]) * unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color="k", marker="*", ms=0.5, label="gas", ) plot( t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_star_mass[1:] - box_star_mass[n_snapshots - 1]) * unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color="r", marker="*", ms=0.5, label="stars", ) plot( t[1:] * unit_time_in_cgs / Gyr_in_cgs, (box_star_mass[1:] - box_star_mass[n_snapshots - 1] + box_mass[1:] - box_mass[0]) * unit_mass_in_cgs / Msun_in_cgs, linewidth=0.5, color="g", marker="*", ms=0.5, label="total", ) xlabel("${\\rm{Time}} (Gyr)$", labelpad=0) ylabel("Change in total gas particle mass (Msun)", labelpad=2) ticklabel_format(style="sci", axis="y", scilimits=(0, 0)) legend() savefig("box_evolution.png", dpi=200)