############################################################################### # This file is part of SWIFT. # Copyright (c) 2022 Bert Vandenbroucke (bert.vandenbroucke@gmail.com) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . # ############################################################################## # Computes the analytical solution of the Toro (2009) test 2 and plots the SPH answer # Generates the analytical solution for the Toro (2009) test case 2 # The script works for a given left (x<0) and right (x>0) state and computes the solution at a later time t. # This follows the solution given in (Toro, 2009) # Parameters gas_gamma = 5.0 / 3.0 # Polytropic index rho_L = 1.0 # Density left state rho_R = 1.0 # Density right state v_L = -2.0 # Velocity left state v_R = 2.0 # Velocity right state P_L = 0.4 # Pressure left state P_R = 0.4 # Pressure right state import sys sys.path.append("../") from riemannSolver import RiemannSolver import matplotlib matplotlib.use("Agg") from pylab import * from scipy import stats import h5py style.use("../../../tools/stylesheets/mnras.mplstyle") snap = int(sys.argv[1]) # Read the simulation data sim = h5py.File("toroTest2_%04d.hdf5" % snap, "r") boxSize = sim["/Header"].attrs["BoxSize"][0] time = sim["/Header"].attrs["Time"][0] scheme = sim["/HydroScheme"].attrs["Scheme"] kernel = sim["/HydroScheme"].attrs["Kernel function"] neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"] eta = sim["/HydroScheme"].attrs["Kernel eta"] git = sim["Code"].attrs["Git Revision"] x = sim["/PartType0/Coordinates"][:, 0] v = sim["/PartType0/Velocities"][:, 0] u = sim["/PartType0/InternalEnergies"][:] S = sim["/PartType0/Entropies"][:] P = sim["/PartType0/Pressures"][:] rho = sim["/PartType0/Densities"][:] x_min = -1.0 x_max = 1.0 x += x_min N = 1000 # Bin the data x_bin_edge = np.arange(x_min, x_max, 0.02) x_bin = 0.5 * (x_bin_edge[1:] + x_bin_edge[:-1]) rho_bin, _, _ = stats.binned_statistic(x, rho, statistic="mean", bins=x_bin_edge) v_bin, _, _ = stats.binned_statistic(x, v, statistic="mean", bins=x_bin_edge) P_bin, _, _ = stats.binned_statistic(x, P, statistic="mean", bins=x_bin_edge) S_bin, _, _ = stats.binned_statistic(x, S, statistic="mean", bins=x_bin_edge) u_bin, _, _ = stats.binned_statistic(x, u, statistic="mean", bins=x_bin_edge) rho2_bin, _, _ = stats.binned_statistic(x, rho ** 2, statistic="mean", bins=x_bin_edge) v2_bin, _, _ = stats.binned_statistic(x, v ** 2, statistic="mean", bins=x_bin_edge) P2_bin, _, _ = stats.binned_statistic(x, P ** 2, statistic="mean", bins=x_bin_edge) S2_bin, _, _ = stats.binned_statistic(x, S ** 2, statistic="mean", bins=x_bin_edge) u2_bin, _, _ = stats.binned_statistic(x, u ** 2, statistic="mean", bins=x_bin_edge) rho_sigma_bin = np.sqrt(rho2_bin - rho_bin ** 2) v_sigma_bin = np.sqrt(v2_bin - v_bin ** 2) P_sigma_bin = np.sqrt(P2_bin - P_bin ** 2) S_sigma_bin = np.sqrt(S2_bin - S_bin ** 2) u_sigma_bin = np.sqrt(u2_bin - u_bin ** 2) # Prepare reference solution solver = RiemannSolver(gas_gamma) delta_x = (x_max - x_min) / N x_s = arange(0.5 * x_min, 0.5 * x_max, delta_x) rho_s, v_s, P_s, _ = solver.solve(rho_L, v_L, P_L, rho_R, v_R, P_R, x_s / time) rho_s2, v_s2, P_s2, _ = solver.solve(rho_R, v_R, P_R, rho_L, v_L, P_L, x_s / time) x_s2 = np.array(x_s) x_s2 += 1.0 s2neg = x_s2 > 1.0 s2pos = ~s2neg x_s2[s2neg] -= 2.0 # Additional arrays u_s = P_s / (rho_s * (gas_gamma - 1.0)) # internal energy s_s = P_s / rho_s ** gas_gamma # entropic function u_s2 = P_s2 / (rho_s2 * (gas_gamma - 1.0)) # internal energy s_s2 = P_s2 / rho_s2 ** gas_gamma # entropic function # Plot the interesting quantities figure(figsize=(7, 7 / 1.6)) # Velocity profile -------------------------------- subplot(231) plot(x, v, ".", color="r", ms=0.5, alpha=0.2) plot(x_s, v_s, "--", color="k", alpha=0.8, lw=1.2) plot(x_s2[s2pos], v_s2[s2pos], "--", color="k", alpha=0.8, lw=1.2) plot(x_s2[s2neg], v_s2[s2neg], "--", color="k", alpha=0.8, lw=1.2) errorbar(x_bin, v_bin, yerr=v_sigma_bin, fmt=".", ms=8.0, color="b", lw=1.2) xlabel("${\\rm{Position}}~x$", labelpad=0) ylabel("${\\rm{Velocity}}~v_x$", labelpad=0) # Density profile -------------------------------- subplot(232) plot(x, rho, ".", color="r", ms=0.5, alpha=0.2) plot(x_s, rho_s, "--", color="k", alpha=0.8, lw=1.2) plot(x_s2[s2pos], rho_s2[s2pos], "--", color="k", alpha=0.8, lw=1.2) plot(x_s2[s2neg], rho_s2[s2neg], "--", color="k", alpha=0.8, lw=1.2) errorbar(x_bin, rho_bin, yerr=rho_sigma_bin, fmt=".", ms=8.0, color="b", lw=1.2) xlabel("${\\rm{Position}}~x$", labelpad=0) ylabel("${\\rm{Density}}~\\rho$", labelpad=0) # Pressure profile -------------------------------- subplot(233) plot(x, P, ".", color="r", ms=0.5, alpha=0.2) plot(x_s, P_s, "--", color="k", alpha=0.8, lw=1.2) plot(x_s2[s2pos], P_s2[s2pos], "--", color="k", alpha=0.8, lw=1.2) plot(x_s2[s2neg], P_s2[s2neg], "--", color="k", alpha=0.8, lw=1.2) errorbar(x_bin, P_bin, yerr=P_sigma_bin, fmt=".", ms=8.0, color="b", lw=1.2) xlabel("${\\rm{Position}}~x$", labelpad=0) ylabel("${\\rm{Pressure}}~P$", labelpad=0) # Internal energy profile ------------------------- subplot(234) plot(x, u, ".", color="r", ms=0.5, alpha=0.2) plot(x_s, u_s, "--", color="k", alpha=0.8, lw=1.2) plot(x_s2[s2pos], u_s2[s2pos], "--", color="k", alpha=0.8, lw=1.2) plot(x_s2[s2neg], u_s2[s2neg], "--", color="k", alpha=0.8, lw=1.2) errorbar(x_bin, u_bin, yerr=u_sigma_bin, fmt=".", ms=8.0, color="b", lw=1.2) xlabel("${\\rm{Position}}~x$", labelpad=0) ylabel("${\\rm{Internal~Energy}}~u$", labelpad=0) # Entropy profile --------------------------------- subplot(235) plot(x, S, ".", color="r", ms=0.5, alpha=0.2) plot(x_s, s_s, "--", color="k", alpha=0.8, lw=1.2) plot(x_s2[s2pos], s_s2[s2pos], "--", color="k", alpha=0.8, lw=1.2) plot(x_s2[s2neg], s_s2[s2neg], "--", color="k", alpha=0.8, lw=1.2) errorbar(x_bin, S_bin, yerr=S_sigma_bin, fmt=".", ms=8.0, color="b", lw=1.2) xlabel("${\\rm{Position}}~x$", labelpad=0) ylabel("${\\rm{Entropy}}~S$", labelpad=0) # Information ------------------------------------- subplot(236, frameon=False) text_fontsize = 5 text( -0.49, 0.9, "Toro (2009) test 2 with $\\gamma=%.3f$ in 3D at $t=%.2f$" % (gas_gamma, time), fontsize=text_fontsize, ) text( -0.49, 0.8, "Left: $(P_L, \\rho_L, v_L) = (%.3f, %.3f, %.3f)$" % (P_L, rho_L, v_L), fontsize=text_fontsize, ) text( -0.49, 0.7, "Right: $(P_R, \\rho_R, v_R) = (%.3f, %.3f, %.3f)$" % (P_R, rho_R, v_R), fontsize=text_fontsize, ) plot([-0.49, 0.1], [0.62, 0.62], "k-", lw=1) text(-0.49, 0.5, "SWIFT %s" % git.decode("utf-8"), fontsize=text_fontsize) text(-0.49, 0.4, scheme.decode("utf-8"), fontsize=text_fontsize) text(-0.49, 0.3, kernel.decode("utf-8"), fontsize=text_fontsize) text( -0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)" % (neighbours, eta), fontsize=text_fontsize, ) xlim(-0.5, 0.5) ylim(0, 1) xticks([]) yticks([]) tight_layout() savefig("ToroTest2.png", dpi=200)