############################################################################### # This file is part of SWIFT. # Copyright (c) 2017 Bert Vandenbroucke (bert.vandenbroucke@gmail.com) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . # ############################################################################## # Generates a distorted 1D grid with a density profile that balances out the # external sine wave potential if run with an isothermal equation of state. import numpy as np import h5py # constant thermal energy # the definition below assumes the same thermal energy is defined in const.h, # and also that the code was configured with an adiabatic index of 5./3. uconst = 20.2615290634 cs2 = 2.0 * uconst / 3.0 A = 10.0 fileName = "sineWavePotential.hdf5" numPart_1D = 50 boxSize = [1.0, 1.0] numPart = numPart_1D ** 2 coords = np.zeros((numPart, 3)) v = np.zeros((numPart, 3)) m = np.zeros(numPart) + 1.0 h = np.zeros(numPart) + 2.0 / numPart u = np.zeros(numPart) + uconst ids = np.arange(numPart, dtype="L") rho = np.zeros(numPart) # first set the positions, as we try to do a reasonable volume estimate to # set the masses for i in range(numPart_1D): for j in range(numPart_1D): coords[numPart_1D * i + j, 0] = (i + 0.5) / numPart_1D coords[numPart_1D * i + j, 1] = (j + 0.5) / numPart_1D V = 1.0 / numPart for i in range(numPart): rho[i] = 1000.0 * np.exp( -0.5 * A / np.pi / cs2 * np.cos(2.0 * np.pi * coords[i, 0]) ) m[i] = rho[i] * V # File file = h5py.File(fileName, "w") # Header grp = file.create_group("/Header") grp.attrs["BoxSize"] = boxSize grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0] grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0] grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0] grp.attrs["Time"] = 0.0 grp.attrs["NumFilesPerSnapshot"] = 1 grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] grp.attrs["Flag_Entropy_ICs"] = 0 grp.attrs["Dimension"] = 2 # Units grp = file.create_group("/Units") grp.attrs["Unit length in cgs (U_L)"] = 1.0 grp.attrs["Unit mass in cgs (U_M)"] = 1.0 grp.attrs["Unit time in cgs (U_t)"] = 1.0 grp.attrs["Unit current in cgs (U_I)"] = 1.0 grp.attrs["Unit temperature in cgs (U_T)"] = 1.0 # Particle group grp = file.create_group("/PartType0") grp.create_dataset("Coordinates", data=coords, dtype="d") grp.create_dataset("Velocities", data=v, dtype="f") grp.create_dataset("Masses", data=m, dtype="f") grp.create_dataset("SmoothingLength", data=h, dtype="f") grp.create_dataset("InternalEnergy", data=u, dtype="f") grp.create_dataset("ParticleIDs", data=ids, dtype="L") grp.create_dataset("Density", data=rho, dtype="f") file.close()