""" Makes a movie of the KH 2D data. You will need to run your movie with far higher time-resolution than usual to get a nice movie; around 450 snapshots over 6s is required. Edit this file near the bottom with the number of snaps you have. Written by Josh Borrow (joshua.borrow@durham.ac.uk) """ import os import h5py as h5 import numpy as np import scipy.interpolate as si def load_and_extract(filename): """ Load the data and extract relevant info. """ with h5.File(filename, "r") as f: x, y, _ = f["PartType0/Coordinates"][...].T density = f["PartType0/Density"][...] return x, y, density def make_plot(filename, array, nx, ny, dx, dy): """ Load the data and plop it on the grid using nearest neighbour searching for finding the 'correct' value of the density. """ data_x, data_y, density = load_and_extract(filename) # Make the grid x = np.linspace(*dx, nx) y = np.linspace(*dy, ny) xv, yv = np.meshgrid(x, y) mesh = si.griddata((data_x, data_y), density, (xv, yv), method="nearest") array.set_array(mesh) return (array,) def frame(n, *args): """ Make a single frame. Requires the global variables plot and dpi. """ global plot, dpi fn = "{}_{:04d}.hdf5".format(filename, n) return make_plot(fn, plot, dpi, dpi, (0, 1), (0, 1)) if __name__ == "__main__": import matplotlib matplotlib.use("Agg") from tqdm import tqdm from matplotlib.animation import FuncAnimation from scipy.stats import gaussian_kde import matplotlib.pyplot as plt filename = "kelvinHelmholtz" dpi = 512 # Look for the number of files in the directory. i = 0 while True: if os.path.isfile("{}_{:04d}.hdf5".format(filename, i)): i += 1 else: break if i > 10000: raise FileNotFoundError("Could not find the snapshots in the directory") frames = tqdm(np.arange(0, i)) # Creation of first frame fig, ax = plt.subplots(1, 1, figsize=(1, 1), frameon=False) ax.axis("off") # Remove annoying black frame. data_x, data_y, density = load_and_extract("kelvinHelmholtz_0000.hdf5") x = np.linspace(0, 1, dpi) y = np.linspace(0, 1, dpi) xv, yv = np.meshgrid(x, y) mesh = si.griddata((data_x, data_y), density, (xv, yv), method="nearest") # Global variable for set_array plot = ax.imshow(mesh, extent=[0, 1, 0, 1], animated=True, interpolation="none") anim = FuncAnimation(fig, frame, frames, interval=40, blit=False) # Remove all whitespace fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=None, hspace=None) # Actually make the movie anim.save("khmovie.mp4", dpi=dpi, bitrate=4096)