############################################################################### # This file is part of SWIFT. # Copyright (c) 2018 Bert Vandenbroucke (bert.vandenbroucke@gmail.com) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . # ############################################################################## import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import numpy as np import sys import h5py plt.style.use("../../../tools/stylesheets/mnras.mplstyle") snap = int(sys.argv[1]) # Open the file and read the relevant data file = h5py.File("interactingBlastWaves_{0:04d}.hdf5".format(snap), "r") x = file["/PartType0/Coordinates"][:, 0] rho = file["/PartType0/Densities"][:] v = file["/PartType0/Velocities"][:, 0] u = file["/PartType0/InternalEnergies"][:] S = file["/PartType0/Entropies"][:] P = file["/PartType0/Pressures"][:] time = file["/Header"].attrs["Time"][0] scheme = file["/HydroScheme"].attrs["Scheme"] kernel = file["/HydroScheme"].attrs["Kernel function"] neighbours = file["/HydroScheme"].attrs["Kernel target N_ngb"][0] eta = file["/HydroScheme"].attrs["Kernel eta"][0] gamma = file["/HydroScheme"].attrs["Adiabatic index"] git = file["Code"].attrs["Git Revision"] if gamma != 1.4: print( "Error: SWIFT was run with the wrong adiabatic index. Should have been 1.4", gamma, ) exit(1) ref = np.loadtxt("interactingBlastWaves1D_exact.txt") # Plot the interesting quantities plt.figure(figsize=(7, 7 / 1.6)) line_color = "C4" binned_color = "C2" binned_marker_size = 4 scatter_props = dict( marker=".", ms=4, markeredgecolor="none", alpha=0.2, zorder=-1, rasterized=True, linestyle="none", ) # Velocity profile plt.subplot(231) plt.plot(x, v, **scatter_props) plt.plot(ref[:, 0], ref[:, 2], "--", color=line_color, alpha=0.8, lw=1.2) plt.xlabel("${\\rm{Position}}~x$", labelpad=0) plt.ylabel("${\\rm{Velocity}}~v_x$", labelpad=0) plt.xlim(0.0, 1.0) plt.ylim(-1.0, 15.0) # Density profile plt.subplot(232) plt.plot(x, rho, **scatter_props) plt.plot(ref[:, 0], ref[:, 1], "--", color=line_color, alpha=0.8, lw=1.2) plt.xlabel("${\\rm{Position}}~x$", labelpad=0) plt.ylabel("${\\rm{Density}}~\\rho$", labelpad=0) plt.xlim(0.0, 1.0) # Pressure profile plt.subplot(233) plt.plot(x, P, **scatter_props) plt.plot(ref[:, 0], ref[:, 3], "--", color=line_color, alpha=0.8, lw=1.2) plt.xlabel("${\\rm{Position}}~x$", labelpad=0) plt.ylabel("${\\rm{Pressure}}~P$", labelpad=0) plt.xlim(0.0, 1.0) # Internal energy profile plt.subplot(234) plt.plot(x, u, **scatter_props) plt.plot( ref[:, 0], ref[:, 3] / ref[:, 1] / (gamma - 1.0), "--", color=line_color, alpha=0.8, lw=1.2, ) plt.xlabel("${\\rm{Position}}~x$", labelpad=0) plt.ylabel("${\\rm{Internal~Energy}}~u$", labelpad=0) plt.xlim(0.0, 1.0) # Entropy profile plt.subplot(235) plt.plot(x, S, **scatter_props) plt.plot( ref[:, 0], ref[:, 3] / ref[:, 1] ** gamma, "--", color=line_color, alpha=0.8, lw=1.2 ) plt.xlabel("${\\rm{Position}}~x$", labelpad=0) plt.ylabel("${\\rm{Entropy}}~S$", labelpad=0) plt.xlim(0.0, 1.0) # Run information plt.subplot(236, frameon=False) text_fontsize = 5 plt.text( -0.45, 0.9, "Interacting blast waves test\nwith $\\gamma={0:.3f}$ in 1D at $t = {1:.2f}$".format( gamma[0], time ), fontsize=text_fontsize, ) plt.plot([-0.45, 0.1], [0.62, 0.62], "k-", lw=1) plt.text(-0.45, 0.5, "$SWIFT$ %s" % git.decode("utf-8"), fontsize=text_fontsize) plt.text(-0.45, 0.4, scheme.decode("utf-8"), fontsize=text_fontsize) plt.text(-0.45, 0.3, kernel.decode("utf-8"), fontsize=text_fontsize) plt.text( -0.45, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)" % (neighbours, eta), fontsize=text_fontsize, ) plt.xlim(-0.5, 0.5) plt.ylim(0.0, 1.0) plt.xticks([]) plt.yticks([]) plt.tight_layout() plt.savefig("InteractingBlastWaves.png", dpi=200)