############################################################################### # This file is part of SWIFT. # Copyright (c) 2016 Matthieu Schaller (schaller@strw.leidenuniv.nl) # 2018 Bert Vandenbroucke (bert.vandenbroucke@gmail.com) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . # ############################################################################## # Computes the analytical solution of the Sod shock and plots the SPH answer # Generates the analytical solution for the Sod shock test case # The script works for a given left (x<0) and right (x>0) state and computes the solution at a later time t. # This follows the solution given in (Toro, 2009) # Parameters gas_gamma = 5.0 / 3.0 # Polytropic index rho_L = 1.0 # Density left state rho_R = 0.125 # Density right state v_L = 0.0 # Velocity left state v_R = 0.0 # Velocity right state P_L = 1.0 # Pressure left state P_R = 0.1 # Pressure right state import sys sys.path.append("../../HydroTests/") from riemannSolver import RiemannSolver import matplotlib matplotlib.use("Agg") from pylab import * import h5py style.use("../../../tools/stylesheets/mnras.mplstyle") snap = int(sys.argv[1]) # Read the simulation data sim = h5py.File("sodShock_%04d.hdf5" % snap, "r") boxSize = sim["/Header"].attrs["BoxSize"][0] anow = sim["/Header"].attrs["Scale-factor"] a_i = sim["/Cosmology"].attrs["a_beg"] H_0 = sim["/Cosmology"].attrs["H0 [internal units]"] time = 2.0 * (1.0 / np.sqrt(a_i) - 1.0 / np.sqrt(anow)) / H_0 scheme = sim["/HydroScheme"].attrs["Scheme"].decode("utf-8") kernel = sim["/HydroScheme"].attrs["Kernel function"].decode("utf-8") neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"] eta = sim["/HydroScheme"].attrs["Kernel eta"] git = sim["Code"].attrs["Git Revision"].decode("utf-8") x = sim["/PartType0/Coordinates"][:, 0] v = sim["/PartType0/Velocities"][:, 0] * anow u = sim["/PartType0/InternalEnergies"][:] S = sim["/PartType0/Entropies"][:] P = sim["/PartType0/Pressures"][:] rho = sim["/PartType0/Densities"][:] try: alpha = sim["/PartType0/ViscosityParameters"][:] plot_alpha = True except: plot_alpha = False N = 1000 # Number of points x_min = -1.0 x_max = 1.0 x += x_min # Prepare reference solution solver = RiemannSolver(gas_gamma) delta_x = (x_max - x_min) / N x_s = arange(0.5 * x_min, 0.5 * x_max, delta_x) rho_s, v_s, P_s, _ = solver.solve(rho_L, v_L, P_L, rho_R, v_R, P_R, x_s / time) # Additional arrays u_s = P_s / (rho_s * (gas_gamma - 1.0)) # internal energy s_s = P_s / rho_s ** gas_gamma # entropic function # Shock position (since we want to overplot it in the viscosity/diffusion plot c_R = sqrt(gas_gamma * P_R / rho_R) x_shock = (c_R + v_R) * time # Plot the interesting quantities figure(figsize=(7, 7 / 1.6)) # Velocity profile -------------------------------- subplot(231) plot(x, v, ".", color="r", ms=4.0) plot(x_s, v_s, "--", color="k", alpha=0.8, lw=1.2) xlabel("${\\rm{Position}}~x$", labelpad=0) ylabel("${\\rm{Velocity}}~v_x$", labelpad=0) xlim(-0.5, 0.5) ylim(-0.1, 0.95) # Density profile -------------------------------- subplot(232) plot(x, rho, ".", color="r", ms=4.0) plot(x_s, rho_s, "--", color="k", alpha=0.8, lw=1.2) xlabel("${\\rm{Position}}~x$", labelpad=0) ylabel("${\\rm{Density}}~\\rho$", labelpad=0) xlim(-0.5, 0.5) ylim(0.05, 1.1) # Pressure profile -------------------------------- subplot(233) plot(x, P, ".", color="r", ms=4.0) plot(x_s, P_s, "--", color="k", alpha=0.8, lw=1.2) xlabel("${\\rm{Position}}~x$", labelpad=0) ylabel("${\\rm{Pressure}}~P$", labelpad=0) xlim(-0.5, 0.5) ylim(0.01, 1.1) # Internal energy profile ------------------------- subplot(234) plot(x, u, ".", color="r", ms=4.0) plot(x_s, u_s, "--", color="k", alpha=0.8, lw=1.2) xlabel("${\\rm{Position}}~x$", labelpad=0) ylabel("${\\rm{Internal~Energy}}~u$", labelpad=0) xlim(-0.5, 0.5) ylim(0.8, 2.2) # Entropy/alpha profile --------------------------------- subplot(235) if plot_alpha: plot(x, alpha, ".", color="r", ms=4.0) ylabel(r"${\rm{Viscosity}}~\alpha$", labelpad=0) # Show location of shock axvline(x=x_shock, color="k", alpha=0.5, ls="dashed", lw=1.2) ylim(0, 1) else: plot(x, S, ".", color="r", ms=4.0) plot(x_s, s_s, "--", color="k", alpha=0.8, lw=1.2) ylabel("${\\rm{Entropy}}~S$", labelpad=0) ylim(0.8, 3.8) xlabel("${\\rm{Position}}~x$", labelpad=0) xlim(-0.5, 0.5) # Information ------------------------------------- subplot(236, frameon=False) text_fontsize = 5 z_now = 1.0 / anow - 1.0 text( -0.49, 0.9, "Sod shock with $\\gamma=%.3f$ in 1D at $z=%.2f$" % (gas_gamma, z_now), fontsize=text_fontsize, ) text( -0.49, 0.8, "Left: $(P_L, \\rho_L, v_L) = (%.3f, %.3f, %.3f)$" % (P_L, rho_L, v_L), fontsize=text_fontsize, ) text( -0.49, 0.7, "Right: $(P_R, \\rho_R, v_R) = (%.3f, %.3f, %.3f)$" % (P_R, rho_R, v_R), fontsize=text_fontsize, ) z_i = 1.0 / a_i - 1.0 text(-0.49, 0.6, "Initial redshift: $%.2f$" % z_i, fontsize=text_fontsize) plot([-0.49, 0.1], [0.52, 0.52], "k-", lw=1) text(-0.49, 0.4, "SWIFT %s" % git, fontsize=text_fontsize) text(-0.49, 0.3, scheme, fontsize=text_fontsize) text(-0.49, 0.2, kernel, fontsize=text_fontsize) text( -0.49, 0.1, "$%.2f$ neighbours ($\\eta=%.3f$)" % (neighbours, eta), fontsize=text_fontsize, ) xlim(-0.5, 0.5) ylim(0, 1) xticks([]) yticks([]) tight_layout() savefig("SodShock.png", dpi=200)