/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2018 Loic Hausammann (loic.hausammann@epfl.ch) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Include header */ #include "feedback.h" /* Local includes */ #include "cooling.h" #include "cosmology.h" #include "engine.h" #include "error.h" #include "feedback_properties.h" #include "hydro_properties.h" #include "part.h" #include "units.h" #include /** * @brief Update the properties of the particle due to a supernovae. * * @param p The #part to consider. * @param xp The #xpart to consider. * @param e The #engine. */ void feedback_update_part(struct part* p, struct xpart* xp, const struct engine* e) { /* WARNING: Do not comment out this line, because it will mess-up with SF/sinks. (I think it injects something that it should not...) */ /* Did the particle receive a supernovae */ if (xp->feedback_data.delta_mass == 0) return; const struct cosmology* cosmo = e->cosmology; const struct pressure_floor_props* pressure_floor = e->pressure_floor_props; /* Turn off the cooling */ cooling_set_part_time_cooling_off(p, xp, e->time); /* Update mass */ const float old_mass = hydro_get_mass(p); const float new_mass = old_mass + xp->feedback_data.delta_mass; if (xp->feedback_data.delta_mass < 0.) { error("Delta mass smaller than 0"); } hydro_set_mass(p, new_mass); xp->feedback_data.delta_mass = 0; /* Update the density */ p->rho *= new_mass / old_mass; /* Update internal energy */ const float u = hydro_get_physical_internal_energy(p, xp, cosmo) * old_mass / new_mass; const float u_new = u + xp->feedback_data.delta_u; hydro_set_physical_internal_energy(p, xp, cosmo, u_new); hydro_set_drifted_physical_internal_energy(p, cosmo, pressure_floor, u_new); xp->feedback_data.delta_u = 0.; /* Update the velocities */ for (int i = 0; i < 3; i++) { const float dv = xp->feedback_data.delta_p[i] / new_mass; xp->v_full[i] += dv; p->v[i] += dv; xp->feedback_data.delta_p[i] = 0; } } /** * @brief Finishes the #part density calculation. * * Nothing to do here. * * @param p The particle to act upon * @param xp The extra particle to act upon */ __attribute__((always_inline)) INLINE void feedback_end_density( struct part* p, struct xpart* xp) {} /** * @brief Reset the gas particle-carried fields related to feedback at the * start of a step. * * Nothing to do here in the GEAR model. * * @param p The particle. * @param xp The extended data of the particle. */ void feedback_reset_part(struct part* p, struct xpart* xp) {} /** * @brief Should this particle be doing any feedback-related operation? * * @param sp The #spart. * @param e The #engine. */ int feedback_is_active(const struct spart* sp, const struct engine* e) { /* the particle is inactive if its birth_scale_factor or birth_time is * negative */ if (sp->birth_scale_factor < 0.0 || sp->birth_time < 0.0) return 0; return sp->feedback_data.will_do_feedback; } /** * @brief Prepares a s-particle for its feedback interactions * * @param sp The particle to act upon */ void feedback_init_spart(struct spart* sp) { sp->feedback_data.enrichment_weight = 0.f; } /** * @brief Prepares a star's feedback field before computing what * needs to be distributed. * * This is called in the stars ghost. */ void feedback_reset_feedback(struct spart* sp, const struct feedback_props* feedback_props) {} /** * @brief Initialises the s-particles feedback props for the first time * * This function is called only once just after the ICs have been * read in to do some conversions. * * @param sp The particle to act upon. * @param feedback_props The properties of the feedback model. */ void feedback_prepare_spart(struct spart* sp, const struct feedback_props* feedback_props) {} /** * @brief Prepare a #spart for the feedback task. * * This is called in the stars ghost task. * * In here, we only need to add the missing coefficients. * * @param sp The particle to act upon * @param feedback_props The #feedback_props structure. * @param cosmo The current cosmological model. * @param us The unit system. * @param phys_const The #phys_const. * @param star_age_beg_step The age of the star at the star of the time-step in * internal units. * @param dt The time-step size of this star in internal units. * @param time The physical time in internal units. * @param ti_begin The integer time at the beginning of the step. * @param with_cosmology Are we running with cosmology on? */ void feedback_prepare_feedback(struct spart* restrict sp, const struct feedback_props* feedback_props, const struct cosmology* cosmo, const struct unit_system* us, const struct phys_const* phys_const, const double star_age_beg_step, const double dt, const double time, const integertime_t ti_begin, const int with_cosmology) { /* Add missing h factor */ const float hi_inv = 1.f / sp->h; const float hi_inv_dim = pow_dimension(hi_inv); /* 1/h^d */ sp->feedback_data.enrichment_weight *= hi_inv_dim; }