/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2018 Loic Hausammann (loic.hausammann@epfl.ch)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
/* Include header */
#include "feedback.h"
/* Local includes */
#include "cooling.h"
#include "cosmology.h"
#include "engine.h"
#include "error.h"
#include "feedback_properties.h"
#include "hydro_properties.h"
#include "part.h"
#include "units.h"
#include
/**
* @brief Update the properties of the particle due to a supernovae.
*
* @param p The #part to consider.
* @param xp The #xpart to consider.
* @param e The #engine.
*/
void feedback_update_part(struct part* p, struct xpart* xp,
const struct engine* e) {
/* WARNING: Do not comment out this line, because it will mess-up with
SF/sinks. (I think it injects something that it should not...) */
/* Did the particle receive a supernovae */
if (xp->feedback_data.delta_mass == 0) return;
const struct cosmology* cosmo = e->cosmology;
const struct pressure_floor_props* pressure_floor = e->pressure_floor_props;
/* Turn off the cooling */
cooling_set_part_time_cooling_off(p, xp, e->time);
/* Update mass */
const float old_mass = hydro_get_mass(p);
const float new_mass = old_mass + xp->feedback_data.delta_mass;
if (xp->feedback_data.delta_mass < 0.) {
error("Delta mass smaller than 0");
}
hydro_set_mass(p, new_mass);
xp->feedback_data.delta_mass = 0;
/* Update the density */
p->rho *= new_mass / old_mass;
/* Update internal energy */
const float u =
hydro_get_physical_internal_energy(p, xp, cosmo) * old_mass / new_mass;
const float u_new = u + xp->feedback_data.delta_u;
hydro_set_physical_internal_energy(p, xp, cosmo, u_new);
hydro_set_drifted_physical_internal_energy(p, cosmo, pressure_floor, u_new);
xp->feedback_data.delta_u = 0.;
/* Update the velocities */
for (int i = 0; i < 3; i++) {
const float dv = xp->feedback_data.delta_p[i] / new_mass;
xp->v_full[i] += dv;
p->v[i] += dv;
xp->feedback_data.delta_p[i] = 0;
}
}
/**
* @brief Finishes the #part density calculation.
*
* Nothing to do here.
*
* @param p The particle to act upon
* @param xp The extra particle to act upon
*/
__attribute__((always_inline)) INLINE void feedback_end_density(
struct part* p, struct xpart* xp) {}
/**
* @brief Reset the gas particle-carried fields related to feedback at the
* start of a step.
*
* Nothing to do here in the GEAR model.
*
* @param p The particle.
* @param xp The extended data of the particle.
*/
void feedback_reset_part(struct part* p, struct xpart* xp) {}
/**
* @brief Should this particle be doing any feedback-related operation?
*
* @param sp The #spart.
* @param e The #engine.
*/
int feedback_is_active(const struct spart* sp, const struct engine* e) {
/* the particle is inactive if its birth_scale_factor or birth_time is
* negative */
if (sp->birth_scale_factor < 0.0 || sp->birth_time < 0.0) return 0;
return sp->feedback_data.will_do_feedback;
}
/**
* @brief Prepares a s-particle for its feedback interactions
*
* @param sp The particle to act upon
*/
void feedback_init_spart(struct spart* sp) {
sp->feedback_data.enrichment_weight = 0.f;
}
/**
* @brief Prepares a star's feedback field before computing what
* needs to be distributed.
*
* This is called in the stars ghost.
*/
void feedback_reset_feedback(struct spart* sp,
const struct feedback_props* feedback_props) {}
/**
* @brief Initialises the s-particles feedback props for the first time
*
* This function is called only once just after the ICs have been
* read in to do some conversions.
*
* @param sp The particle to act upon.
* @param feedback_props The properties of the feedback model.
*/
void feedback_prepare_spart(struct spart* sp,
const struct feedback_props* feedback_props) {}
/**
* @brief Prepare a #spart for the feedback task.
*
* This is called in the stars ghost task.
*
* In here, we only need to add the missing coefficients.
*
* @param sp The particle to act upon
* @param feedback_props The #feedback_props structure.
* @param cosmo The current cosmological model.
* @param us The unit system.
* @param phys_const The #phys_const.
* @param star_age_beg_step The age of the star at the star of the time-step in
* internal units.
* @param dt The time-step size of this star in internal units.
* @param time The physical time in internal units.
* @param ti_begin The integer time at the beginning of the step.
* @param with_cosmology Are we running with cosmology on?
*/
void feedback_prepare_feedback(struct spart* restrict sp,
const struct feedback_props* feedback_props,
const struct cosmology* cosmo,
const struct unit_system* us,
const struct phys_const* phys_const,
const double star_age_beg_step, const double dt,
const double time, const integertime_t ti_begin,
const int with_cosmology) {
/* Add missing h factor */
const float hi_inv = 1.f / sp->h;
const float hi_inv_dim = pow_dimension(hi_inv); /* 1/h^d */
sp->feedback_data.enrichment_weight *= hi_inv_dim;
}