############################################################################### # This file is part of SWIFT. # Copyright (c) 2016 Stefan Arridge (stefan.arridge@durhama.ac.uk) # Matthieu Schaller (matthieu.schaller@durham.ac.uk) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . # ############################################################################## import h5py import numpy as np # Generates a SWIFT IC file with a constant density and pressure # Parameters periodic = 1 # 1 For periodic box boxSize = 1.0 # kpc nH = 0.01 # Hydrogen atoms per cm^3 T = 1.0e7 # Initial Temperature gamma = 5.0 / 3.0 # Gas adiabatic index XH = 0.73738788833 # Hydrogen mass fraction. fileName = "coolingBox.hdf5" # --------------------------------------------------- # Code units in cgs. These must agree # with the units defined in the # parameter file. UnitMass_in_cgs = 1.9891e43 # 10^10 solar masses UnitLength_in_cgs = 3.08567758e21 # 1 kpc UnitVelocity_in_cgs = 1.0e5 # km/s # Derived units. UnitDensity_in_cgs = UnitMass_in_cgs / (UnitLength_in_cgs ** 3.0) UnitTime_in_cgs = UnitLength_in_cgs / UnitVelocity_in_cgs # Physical constants m_h_cgs = 1.672621898e-24 k_b_cgs = 1.38064852e-16 # Read id, position and h from glass glass = h5py.File("glassCube_32.hdf5", "r") ids = glass["/PartType0/ParticleIDs"][:] pos = glass["/PartType0/Coordinates"][:, :] * boxSize h = glass["/PartType0/SmoothingLength"][:] * boxSize # Compute basic properties numPart = np.size(pos) // 3 # Density in cgs units rho_cgs = m_h_cgs * nH / XH # Density in code units rho = rho_cgs / UnitDensity_in_cgs # Particle mass in code units mass = boxSize ** 3 * rho / numPart # Use the mean molecular weight for # either ionised or neutral gas, # based on the temperature. mu_neutral = 4.0 / (1.0 + 3.0 * XH) mu_ionised = 4.0 / (8.0 - 5.0 * (1.0 - XH)) if T > 1.0e4: mu = mu_ionised else: mu = mu_neutral internalEnergy = k_b_cgs * T / ((gamma - 1.0) * mu * m_h_cgs) internalEnergy /= UnitVelocity_in_cgs ** 2.0 # File f = h5py.File(fileName, "w") # Header grp = f.create_group("/Header") grp.attrs["BoxSize"] = boxSize grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0] grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0] grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0] grp.attrs["Time"] = 0.0 grp.attrs["NumFilesPerSnapshot"] = 1 grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] grp.attrs["Flag_Entropy_ICs"] = 0 # Runtime parameters grp = f.create_group("/RuntimePars") grp.attrs["PeriodicBoundariesOn"] = periodic # Units grp = f.create_group("/Units") grp.attrs["Unit length in cgs (U_L)"] = UnitLength_in_cgs grp.attrs["Unit mass in cgs (U_M)"] = UnitMass_in_cgs grp.attrs["Unit time in cgs (U_t)"] = UnitTime_in_cgs grp.attrs["Unit current in cgs (U_I)"] = 1.0 grp.attrs["Unit temperature in cgs (U_T)"] = 1.0 # Particle group grp = f.create_group("/PartType0") v = np.zeros((numPart, 3)) ds = grp.create_dataset("Velocities", (numPart, 3), "f") ds[()] = v m = np.full((numPart, 1), mass) ds = grp.create_dataset("Masses", (numPart, 1), "f") ds[()] = m h = np.reshape(h, (numPart, 1)) ds = grp.create_dataset("SmoothingLength", (numPart, 1), "f") ds[()] = h u = np.full((numPart, 1), internalEnergy) ds = grp.create_dataset("InternalEnergy", (numPart, 1), "f") ds[()] = u ids = np.reshape(ids, (numPart, 1)) ds = grp.create_dataset("ParticleIDs", (numPart, 1), "L") ds[()] = ids ds = grp.create_dataset("Coordinates", (numPart, 3), "d") ds[()] = pos f.close() print("Initial condition generated")