\section{Derivatives of the potential} \label{sec:pot_derivatives} For completeness, we give here the full expression for the first few derivatives of the potential that are used in our FMM scheme. We use the notation $\mathbf{r}=(r_x, r_y, r_z)$, $r = |\mathbf{r}|$, $u=r/H$ and $x=2r/r_s$. We also assume $H \ll r_s$. We can construct the higher order derivatives by successively applying the "chain rule". We show representative examples of the first few relevant ones here split by order. We start by constructing derivatives of the truncated potentials. The first step is the construction of derivatives of the long-range truncation function. We define \begin{equation} \alpha(w) \equiv \left(1 + e^w\right)^{-1} \nonumber \end{equation} and compute its derivatives in terms of powers of $\alpha$ (note the difference in notation between powers $\alpha^n$ and n-th derivatives $\alpha^{(n)}$)\footnote{This can be computed by \textsc{Mathematica} using the expression \texttt{Apart[D[1/(1 + Exp[w]), {w, n}]]} for the n-th derivative.}: \begin{align} \alpha^{(0)}(w) &= +\alpha(w), \nonumber\\ \alpha^{(1)}(w) &= -\alpha(w) + \alpha^2(w), \nonumber\\ \alpha^{(2)}(w) &= +\alpha(w) - 3\alpha^2(w) + 2\alpha^3(w), \nonumber\\ \alpha^{(3)}(w) &= -\alpha(w) + 7\alpha^2(w) - 12\alpha^3(w) + 6\alpha^4(w), \nonumber\\ \alpha^{(4)}(w) &= +\alpha(w) - 15\alpha^2(w) + 50\alpha^3(w) - 60\alpha^4(w) + 24\alpha^5(w), \nonumber\\ \alpha^{(5)}(w) &= -\alpha(w) + 31\alpha^2(w) -180\alpha^3(w) + 390\alpha^4(w) -360\alpha^5(w) + 120\alpha^6(w).\nonumber \end{align} We can then construct our sigmoid $\sigma(w) \equiv e^w\alpha(w)$ and its derivatives, again in terms of powers of $\alpha(w)$ only: \begin{align} \sigma^{(0)}(w) &= e^w\alpha(w), \nonumber\\ \sigma^{(1)}(w) &= e^w\left(\alpha^{(1)}(w) + \alpha(w) \right) \nonumber\\ &= e^w \alpha^2(w), \nonumber \\ \sigma^{(2)}(w) &= e^w\left(\alpha(w) +2\alpha^{(1)}(w) + \alpha^{(2)}(w) \right) \nonumber\\ &= e^w \left(2\alpha^3(w) - \alpha^2(w)\right), \nonumber \\ \sigma^{(3)}(w) &= e^w\left(\alpha(w) + 3\alpha^{(1)}(w) + 3\alpha^{(2)}(w) + \alpha^{(3)}(w) \right) \nonumber\\ &= e^w \left(6\alpha^4(w) - 6\alpha^3(w) + \alpha^2(w)\right), \nonumber \\ \sigma^{(4)}(w) &= e^w\left(\alpha(w) + 4\alpha^{(1)}(w) + 6\alpha^{(2)}(w) + 4\alpha^{(3)}(w) + \alpha^{(4)}(w) \right) \nonumber\\ &= e^w \left(24\alpha^5(w) - 36\alpha^4(w) + 14\alpha^3(w) - \alpha^2(w)\right), \nonumber \\ \sigma^{(5)}(w) &= e^w\left(\alpha(w) + 5\alpha^{(1)}(w) + 10\alpha^{(2)}(w) + 10\alpha^{(3)}(w) + 5\alpha^{(4)}(w) + \alpha^{(5)}(w) \right) \nonumber\\ &= e^w \left(120\alpha^6(w) - 240\alpha^5(w) + 150\alpha^4(w) - 30\alpha^3(w) + \alpha^2(w)\right). \nonumber \end{align} We can finally construct our long-range truncation function $\chi(r,r_s) \equiv 2 - 2\sigma(2r/r_s)$ and its derivatives \begin{align} \chi(r,r_s) &= 2 - 2e^{2r/r_s} \alpha(2r/r_s), \nonumber \\ \frac{\partial}{\partial r} \chi(r, r_s) &= -2 \left(\frac{2}{r_s}\right)^1 \sigma^{(1)}\left(\frac{2r}{r_s}\right) = -2 \left(\frac{2}{r_s}\right)^1 e^{\frac{2r}{r_s}} \alpha^2 \left(\frac{2r}{r_s}\right), \nonumber\\ \frac{\partial^2}{\partial r^2} \chi(r, r_s) &= -2 \left(\frac{2}{r_s}\right)^2 \sigma^{(2)}\left(\frac{2r}{r_s}\right) = -2 \left(\frac{2}{r_s}\right)^2 e^{\frac{2r}{r_s}} \left[2\alpha^3 \left(\frac{2r}{r_s}\right) - \alpha^2 \left(\frac{2r}{r_s}\right) \right], \nonumber\\ \frac{\partial^3}{\partial r^3} \chi(r, r_s) &= -2 \left(\frac{2}{r_s}\right)^3 \sigma^{(3)}\left(\frac{2r}{r_s}\right) = -2 \left(\frac{2}{r_s}\right)^3 e^{\frac{2r}{r_s}} \left[6\alpha^4 \left(\frac{2r}{r_s}\right) - 6\alpha^3 \left(\frac{2r}{r_s}\right) + \alpha^2 \left(\frac{2r}{r_s}\right) \right],\nonumber \\ \frac{\partial^4}{\partial r^4} \chi(r, r_s) &= -2 \left(\frac{2}{r_s}\right)^4 \sigma^{(4)}\left(\frac{2r}{r_s}\right) = -2 \left(\frac{2}{r_s}\right)^4 e^{\frac{2r}{r_s}} \left[24\alpha^5 \left(\frac{2r}{r_s}\right) - 36\alpha^4 \left(\frac{2r}{r_s}\right) + 14\alpha^3 \left(\frac{2r}{r_s}\right) - \alpha^2 \left(\frac{2r}{r_s}\right) \right],\nonumber \\ \frac{\partial^5}{\partial r^5} \chi(r, r_s) &= -2 \left(\frac{2}{r_s}\right)^5 \sigma^{(5)}\left(\frac{2r}{r_s}\right) = -2 \left(\frac{2}{r_s}\right)^5 e^{\frac{2r}{r_s}} \left[120\alpha^6 \left(\frac{2r}{r_s}\right) - 240\alpha^5 \left(\frac{2r}{r_s}\right) + 150\alpha^4 \left(\frac{2r}{r_s}\right) - 30\alpha^3 \left(\frac{2r}{r_s}\right) + \alpha^2 \left(\frac{2r}{r_s}\right) \right].\nonumber \end{align} In the Newtonian limit ($r_s\rightarrow\infty$) the first expression reduces to $\chi(r,r_s) = 1$ whilst all higher-order derivatives vanish. In the limit $r\rightarrow\infty$ (and $r_s < \infty$), all terms vanish. All these derivatives can be computed easily as they are simple polynomials of $\alpha(2r/r_s)$. They involve one exponential and one inversion for the initial calculation of $\alpha$ and all the other terms can be obtained very eeficiently on modern architectures as they only involve \emph{fused-multiple-add} operations.We can now construct common quantities that appear in derivatives of multiple orders of the truncated an softened gravity field $\varphi (\mathbf{r}, r_s, H) \equiv \frac{1}{r}\chi(r,r_s)$: % \begin{align} % \alpha(x) &= \left(1 + e^x\right)^{-1} \nonumber \\ % \chi(r, r_s) &= 2\left(1 - e^{2r/r_s}\alpha(2r/r_s) \right) \nonumber \\ % \chi'(r, r_s) &= \frac{2}{r_s}\left(2\alpha(x)^2 - 2\alpha(x)\right) \nonumber \\ % \chi''(r, r_s) &= \frac{4}{r_s^2}\left(4\alpha(x)^3 - 6\alpha(x)^2 + 2\alpha(x)\right) \nonumber \\ % \chi^{(3)}(r, r_s) &= \frac{8}{r_s^3} \left(12\alpha(x)^4 - 24\alpha(x)^3 + 14\alpha(x)^2 -2 \alpha(x)\right) \nonumber \\ % \chi^{(4)}(r, r_s) &= \frac{16}{r_s^4} \left(48\alpha(x)^5 - 120\alpha(x)^4 + 100\alpha(x)^3 -30 \alpha(x)^2 + 2\alpha(x)\right) \nonumber \\ % \chi^{(5)}(r, r_s) &= \frac{32}{r_s^5} \left(240\alpha(x)^6 - 720\alpha(x)^5 + 780\alpha(x)^4 - 360\alpha(x)^3 + 62\alpha(x)^2 - 2\alpha(x) \right) \nonumber % \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{1}(r, r_s, H) = % D_tilde_tilde_1 = D_tilde_1 \left\lbrace\begin{array}{rcl} f(u)\times H^{-1} & \mbox{if} & u < 1,\\ %r^{-1} & \mbox{if} & u \geq 1, \chi \times r^{-1} & \mbox{if} & u \geq 1~\mbox{and periodic}, \\ r^{-1} & \mbox{if} & u \geq 1~\mbox{and not periodic}. \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{2}(r, r_s, H) = % D_tilde_tilde_3 = D_tilde_3 * r \left\lbrace\begin{array}{rcl} f'(u)\times H^{-2}& \mbox{if} & u < 1,\\ %-1 \times r^{-3} & \mbox{if} & u \geq 1, \left(r\chi' - \chi\right) \times r^{-2} & \mbox{if} & u \geq 1~\mbox{and periodic}, \\ -1 \times r^{-2} & \mbox{if} & u \geq 1~\mbox{and not periodic}. \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{3}(r, r_s, H) = % D_tilde_tilde_5 = D_tilde_5 * r^2 \left\lbrace\begin{array}{rcl} \left(f''(u) - u^{-1}f'(u)\right)\times H^{-3}& \mbox{if} & u < 1,\\ %3\times r^{-5} & \mbox{if} & u \geq 1, \left(r^2\chi'' - 3r\chi' + 3\chi \right)\times r^{-3} & \mbox{if} & u \geq 1~\mbox{and periodic}, \\ 3 \times r^{-3} & \mbox{if} & u \geq 1~\mbox{and not periodic}. \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{4}(r, r_s, H) = % D_tilde_tilde_7 = D_tilde_7 * r^3 \left\lbrace\begin{array}{rcl} \left(f^{(3)}(u)-3u^{-1}f''(u)+3u^{-2}f'(u)\right)\times H^{-4} & \mbox{if} & u < 1,\\ %-15\times r^{-7} & \mbox{if} & u \geq 1, \left(r^3\chi^{(3)} - 6r^2\chi''+15r\chi'-15\chi\right) \times r^{-4} & \mbox{if} & u \geq 1~\mbox{and periodic}, \\ -15 \times r^{-4} & \mbox{if} & u \geq 1~\mbox{and not periodic}. \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{5}(r, r_s, H) = % D_tilde_tilde_9 = D_tilde_9 * r^4 \left\lbrace\begin{array}{rcl} \left(f^{(4)}(u)-6u^{-1}f^{(3)}(u)+15u^{-2}f''(u)-15u^{-3}f'(u)\right)\times H^{-5}& \mbox{if} & u < 1,\\ %105\times r^{-9} & \mbox{if} & u \geq 1. \left(r^4\chi^{(4)} - 10r^3\chi^{(3)} + 45r^2\chi'' - 105r\chi' + 105\chi \right) \times r^{-5} & \mbox{if} & u \geq 1~\mbox{and periodic}, \\ 105 \times r^{-5} & \mbox{if} & u \geq 1~\mbox{and not periodic}. \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{6}(r, r_s, H) = % D_tilde_tilde_11 = D_tilde_11 * r^4 \left\lbrace\begin{array}{rcl} \left(f^{(5)}(u) -10u^{-1}f^{(4)}(u) +45u^{-2}f^{(3)} -105u^{-3}f''(u) + 105u^{-4}f'(u)\right)\times H^{-6}& \mbox{if} & u < 1,\\ %-945\times r^{-11} & \mbox{if} & u \geq 1. \left(r^5\chi^{(5)} - 15r^4\chi^{(4)} + 105r^3\chi^{(3)} - 420r^2\chi'' + 945r \chi' - 945\chi\right) \times r^{-6} & \mbox{if} & u \geq 1~\mbox{and periodic}, \\ -945\times r^{-6} & \mbox{if} & u \geq 1~\mbox{and not periodic}. \end{array} \right.\nonumber \end{align} In the case $u<1$ and using $f(u)$ given by \ref{eq:fmm:potential}, we can simplify the expressions to get: \begin{align} \mathsf{\tilde{D}}_{1} &= (-3u^7 + 15u^6 - 28u^5 + 21u^4 - 7u^2 + 3) \times H^{-1}, \nonumber \\ \mathsf{\tilde{D}}_{2} &= (-21u^6 + 90u^5 - 140u^4 + 84u^3 - 14u) \times H^{-2}, \nonumber \\ \mathsf{\tilde{D}}_{3} &= (-105u^5 + 360u^4 - 420u^3 + 168u^2) \times H^{-3}, \nonumber \\ \mathsf{\tilde{D}}_{4} &= (-315u^4 + 720u^3 - 420u^2) \times H^{-4}, \nonumber \\ \mathsf{\tilde{D}}_{5} &= (-315u^3 + 420u) \times H^{-5}, \nonumber \\ \mathsf{\tilde{D}}_{6} &= (315u^2 - 1260) \times H^{-6}. \nonumber \end{align} These expressions only use low powers of $u$ and, in particular, no terms involving $1/u$ as would be the case when using a cubic spline kernel for $f(u)$. This makes this choice of softening kernel much faster to evaluate than ones using divisions. Similarly, the expressions in the periodic case for $u>1$ can be simplified to: \begin{align} \mathsf{\tilde{D}}_{1} &= \chi r^{-1}, \nonumber \\ \mathsf{\tilde{D}}_{2} &= -\chi r^{-2} + \chi' r^{-1}, \nonumber \\ \mathsf{\tilde{D}}_{3} &= 3\chi r^{-3} - 3\chi' r^{-2} + \chi'' r^{-1}, \nonumber \\ \mathsf{\tilde{D}}_{4} &= -15\chi r^{-4} + 15\chi' r^{-3} - 6\chi''r^{-2} + \chi^{(3)} r^{-1}, \nonumber \\ \mathsf{\tilde{D}}_{5} &= 105\chi r^{-5} -105\chi' r^{-4} + 45\chi''r^{-3} - 10\chi^{(3)} r^{-2} + \chi^{(4)} r^{-1}\nonumber, \\ \mathsf{\tilde{D}}_{6} &= -945\chi r^{-6} + 945 \chi' r^{-5} -420 \chi'' r^{-4} + 105 \chi^{(3)} r^{-3} - 15\chi^{(4)} r^{-2} + \chi^{(5)} r^{-1}. \nonumber \end{align} We can now write out all the derivatives used in the M2L and M2P kernels: \begin{align} \mathsf{D}_{000}(\mathbf{r}) = \varphi (\mathbf{r}, r_s, H) = \mathsf{\tilde{D}}_{1} \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{100}(\mathbf{r}) = \frac{\partial}{\partial r_x} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right) \mathsf{\tilde{D}}_{2} \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{200}(\mathbf{r}) = \frac{\partial^2}{\partial r_x^2} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^2 \mathsf{\tilde{D}}_{3} + \left(\frac{1}{r}\right)\mathsf{\tilde{D}}_{2}\nonumber \end{align} \begin{align} \mathsf{D}_{110}(\mathbf{r}) = \frac{\partial^2}{\partial r_x\partial r_y} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right) \left(\frac{r_y}{r}\right) \mathsf{\tilde{D}}_{3} \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{300}(\mathbf{r}) = \frac{\partial^3}{\partial r_x^3} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^3 \mathsf{\tilde{D}}_{4} + 3 \left(\frac{r_x}{r}\right) \left(\frac{1}{r}\right) \mathsf{\tilde{D}}_{3} \nonumber \end{align} \begin{align} \mathsf{D}_{210}(\mathbf{r}) = \frac{\partial^3}{\partial r_x^2 r_y} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^2 \left(\frac{r_y}{r}\right) \mathsf{\tilde{D}}_{4} + \left(\frac{r_y}{r}\right) \left(\frac{1}{r}\right) \mathsf{\tilde{D}}_{3} \nonumber \end{align} \begin{align} \mathsf{D}_{111}(\mathbf{r}) = \frac{\partial^3}{\partial r_x\partial r_y\partial r_z} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)\left(\frac{r_y}{r}\right)\left(\frac{r_z}{r}\right) \mathsf{\tilde{D}}_{4} \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{400}(\mathbf{r}) &= \frac{\partial^4}{\partial r_x^4} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^4 \mathsf{\tilde{D}}_{5}+ 6\left(\frac{r_x}{r}\right)^2 \left(\frac{1}{r}\right) \mathsf{\tilde{D}}_{4} + 3 \left(\frac{1}{r}\right)^2 \mathsf{\tilde{D}}_{3} \nonumber \end{align} \begin{align} \mathsf{D}_{310}(\mathbf{r}) &= \frac{\partial^4}{\partial r_x^3 \partial r_y} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^3 \left(\frac{r_y}{r}\right) \mathsf{\tilde{D}}_{5} + 3 \left(\frac{r_x}{r}\right) \left(\frac{r_y}{r}\right) \left(\frac{1}{r}\right) \mathsf{\tilde{D}}_{4} \nonumber \end{align} \begin{align} \mathsf{D}_{220}(\mathbf{r}) &= \frac{\partial^4}{\partial r_x^2 \partial r_y^2} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^2 \left(\frac{r_y}{r}\right)^2 \mathsf{\tilde{D}}_{5} + \left(\frac{r_x}{r}\right)^2 \left(\frac{1}{r}\right) \mathsf{\tilde{D}}_{4} + \left(\frac{r_y}{r}\right)^2 \left(\frac{1}{r}\right) \mathsf{\tilde{D}}_{4} + \left(\frac{1}{r}\right)^2 \mathsf{\tilde{D}}_{3} \nonumber \end{align} \begin{align} \mathsf{D}_{211}(\mathbf{r}) &= \frac{\partial^4}{\partial r_x^2 \partial r_y \partial r_z} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^2\left(\frac{r_y}{r}\right)\left(\frac{r_z}{r}\right) \mathsf{\tilde{D}}_{5} + \left(\frac{r_y}{r}\right)\left(\frac{r_z}{r}\right)\left(\frac{1}{r}\right) \mathsf{\tilde{D}}_{4} \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{500}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^5} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^5 \mathsf{\tilde{D}}_{6} + 10\left(\frac{r_x}{r}\right)^3\left(\frac{1}{r}\right)\mathsf{\tilde{D}}_{5} + 15\left(\frac{r_x}{r}\right)\left(\frac{1}{r}\right)^2\mathsf{\tilde{D}}_{4} \nonumber \end{align} \begin{align} \mathsf{D}_{410}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^4 \partial r_y} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^4 \left(\frac{r_y}{r}\right) \mathsf{\tilde{D}}_{6} + 6 \left(\frac{r_x}{r}\right)^2 \left(\frac{r_y}{r}\right)\left(\frac{1}{r}\right) \mathsf{\tilde{D}}_{5} + 3 \left(\frac{r_y}{r}\right) \left(\frac{1}{r}\right)^2\mathsf{\tilde{D}}_{4} \nonumber \end{align} \begin{align} \mathsf{D}_{320}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^3 \partial r_y^2} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^3 \left(\frac{r_y}{r}\right)^2 \mathsf{\tilde{D}}_{6} + \left(\frac{r_x}{r}\right)^3 \left(\frac{1}{r}\right)\mathsf{\tilde{D}}_{5} + 3 \left(\frac{r_x}{r}\right) \left(\frac{r_y}{r}\right)^2 \left(\frac{1}{r}\right)\mathsf{\tilde{D}}_{5} + 3 \left(\frac{r_x}{r}\right) \left(\frac{1}{r}\right)^2\mathsf{\tilde{D}}_{4} \nonumber \end{align} \begin{align} \mathsf{D}_{311}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^3 \partial r_y \partial r_z} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^3 \left(\frac{r_y}{r}\right) \left(\frac{r_z}{r}\right) \mathsf{\tilde{D}}_{6} + 3 \left(\frac{r_x}{r}\right) \left(\frac{r_y}{r}\right) \left(\frac{r_z}{r}\right) \left(\frac{1}{r}\right)\mathsf{\tilde{D}}_{5} \nonumber \end{align} \begin{align} \mathsf{D}_{221}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^2 \partial r_y^2 \partial r_z} \varphi (\mathbf{r}, r_s, H) = \left(\frac{r_x}{r}\right)^2 \left(\frac{r_y}{r}\right)^2 \left(\frac{r_z}{r}\right) \mathsf{\tilde{D}}_{6} + \left(\frac{r_x}{r}\right)^2 \left(\frac{r_z}{r}\right) \left(\frac{1}{r}\right)\mathsf{\tilde{D}}_{5} + \left(\frac{r_y}{r}\right)^2 \left(\frac{r_z}{r}\right) \left(\frac{1}{r}\right)\mathsf{\tilde{D}}_{5} + \left(\frac{r_z}{r}\right) \left(\frac{1}{r}\right)^2\mathsf{\tilde{D}}_{4} \nonumber \end{align} \begin{comment} \noindent\rule{12cm}{1pt}\\ Old version \\ \noindent\rule{12cm}{1pt} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{1}(r, r_s, H) = \left\lbrace\begin{array}{rcl} -\left(3u^7 - 15u^6 + 28u^5 - 21u^4 + 7u^2 - 3\right)\times H^{-1} & \mbox{if} & u < 1,\\ %r^{-1} & \mbox{if} & u \geq 1, \chi(r, r_s) \times r^{-1} & \mbox{if} & u \geq 1, \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{3}(r, r_s, H) = \left\lbrace\begin{array}{rcl} -\left(21u^5 - 90u^4 + 140u^3 -84u^2 +14\right)\times H^{-3}& \mbox{if} & u < 1,\\ %-1 \times r^{-3} & \mbox{if} & u \geq 1, \left(r\chi'(r, r_s) - \chi(r, r_s)\right) \times r^{-3} & \mbox{if} & u \geq 1, \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{5}(r, r_s, H) = \left\lbrace\begin{array}{rcl} -\left(35u^3 - 120u^2 + 140u - 56\right)\times H^{-5}& \mbox{if} & u < 1,\\ %3\times r^{-5} & \mbox{if} & u \geq 1, \left(r^2\chi''(r, r_s) - 3r\chi'(r, r_s) + 3\chi(r, r_s) \right)\times r^{-5} & \mbox{if} & u \geq 1, \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{7}(r, r_s, H) = \left\lbrace\begin{array}{rcl} -\left(21u - 48 + 28u^{-1}\right)\times H^{-7} & \mbox{if} & u < 1,\\ %-15\times r^{-7} & \mbox{if} & u \geq 1, \left(r^3\chi^{(3)}(r, r_s) - 6r^2\chi''(r, r_s)+15r\chi'(r, r_s)-15\chi(r, r_s)\right) \times r^{-7} & \mbox{if} & u \geq 1, \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{9}(r, r_s, H) = \left\lbrace\begin{array}{rcl} -\left(3u^{-1} - 4u^{-3}\right)\times H^{-9}& \mbox{if} & u < 1,\\ %105\times r^{-9} & \mbox{if} & u \geq 1. \left(r^4\chi^{(4)}(r, r_s) - 10r^3\chi^{(3)} + 45r^2\chi''(r, r_s) - 105r\chi'(r, r_s) + 105\chi(r, r_s) \right) \times r^{-9} & \mbox{if} & u \geq 1 \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align} \mathsf{\tilde{D}}_{11}(r, r_s, H) = \left\lbrace\begin{array}{rcl} -\left(\frac{1}{3}u^{-3} - \frac{4}{3}u^{-5}\right)\times H^{-11}& \mbox{if} & u < 1,\\ %-945\times r^{-11} & \mbox{if} & u \geq 1. \left(r^5\chi^{(5)}(r, r_s) - 15r^4\chi^{(4)}(r, r_s) + 105r^3\chi^{(3)}(r, r_s) - 420r^2\chi''(r, r_s) + 945r \chi'(r, r_s) - 945\chi(r, r_s)\right) \times r^{-11} & \mbox{if} & u \geq 1. \end{array} \right.\nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Starting from the potential (Eq. \ref{eq:fmm:potential}, reproduced here for completeness), we can now build all the relevent derivatives \begin{align} \mathsf{D}_{000}(\mathbf{r}) = \varphi (\mathbf{r}, r_s, H) = \mathsf{\tilde{D}}_{1}(r, r_s, H) \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{100}(\mathbf{r}) = \frac{\partial}{\partial r_x} \varphi (\mathbf{r}, r_s, H) = r_x \mathsf{\tilde{D}}_{3}(r, r_s, H) \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{200}(\mathbf{r}) = \frac{\partial^2}{\partial r_x^2} \varphi (\mathbf{r}, r_s, H) = r_x^2 \mathsf{\tilde{D}}_{5}(r, r_s, H) + \mathsf{\tilde{D}}_{3}(r, r_s, H)\nonumber \end{align} \begin{align} \mathsf{D}_{110}(\mathbf{r}) = \frac{\partial^2}{\partial r_x\partial r_y} \varphi (\mathbf{r}, r_s, H) = r_x r_y \mathsf{\tilde{D}}_{5}(r, r_s, H) \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{300}(\mathbf{r}) = \frac{\partial^3}{\partial r_x^3} \varphi (\mathbf{r}, r_s, H) = r_x^3 \mathsf{\tilde{D}}_{7}(r, r_s, H) + 3 r_x \mathsf{\tilde{D}}_{5}(r, r_s, H) \nonumber \end{align} \begin{align} \mathsf{D}_{210}(\mathbf{r}) = \frac{\partial^3}{\partial r_x^2 r_y} \varphi (\mathbf{r}, r_s, H) = r_x^2 r_y \mathsf{\tilde{D}}_{7}(r, r_s, H) + r_y \mathsf{\tilde{D}}_{5}(r, r_s, H) \nonumber \end{align} \begin{align} \mathsf{D}_{111}(\mathbf{r}) = \frac{\partial^3}{\partial r_x\partial r_y\partial r_z} \varphi (\mathbf{r}, r_s, H) = r_x r_y r_z \mathsf{\tilde{D}}_{7}(r, r_s, H) \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{400}(\mathbf{r}) &= \frac{\partial^4}{\partial r_x^4} \varphi (\mathbf{r}, r_s, H) = r_x^4 \mathsf{\tilde{D}}_{9}(r, r_s, H)+ 6r_x^2 \mathsf{\tilde{D}}_{7}(r, r_s, H) + 3 \mathsf{\tilde{D}}_{5}(r, r_s, H) \nonumber \end{align} \begin{align} \mathsf{D}_{310}(\mathbf{r}) &= \frac{\partial^4}{\partial r_x^3 \partial r_y} \varphi (\mathbf{r}, r_s, H) = r_x^3 r_y \mathsf{\tilde{D}}_{9}(r, r_s, H) + 3 r_x r_y \mathsf{\tilde{D}}_{7}(r, r_s, H) \nonumber \end{align} \begin{align} \mathsf{D}_{220}(\mathbf{r}) &= \frac{\partial^4}{\partial r_x^2 \partial r_y^2} \varphi (\mathbf{r}, r_s, H) = r_x^2 r_y^2 \mathsf{\tilde{D}}_{9}(r, r_s, H) + r_x^2 \mathsf{\tilde{D}}_{7}(r, r_s, H) + r_y^2 \mathsf{\tilde{D}}_{7}(r, r_s, H) + \mathsf{\tilde{D}}_{5}(r, r_s, H) \nonumber \end{align} \begin{align} \mathsf{D}_{211}(\mathbf{r}) &= \frac{\partial^4}{\partial r_x^2 \partial r_y \partial r_z} \varphi (\mathbf{r}, r_s, H) = r_x^2 r_y r_z \mathsf{\tilde{D}}_{9}(r, r_s, H) + r_y r_z \mathsf{\tilde{D}}_{7}(r, r_s, H) \nonumber \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \noindent\rule{6cm}{0.4pt} \begin{align} \mathsf{D}_{500}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^5} \varphi (\mathbf{r}, r_s, H) = r_x^5 \mathsf{\tilde{D}}_{11}(r, r_s, H) + 10r_x^3\mathsf{\tilde{D}}_{9}(r, r_s, H) + 15r_x\mathsf{\tilde{D}}_{7}(r, r_s, H) \nonumber \end{align} \begin{align} \mathsf{D}_{410}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^4 \partial r_y} \varphi (\mathbf{r}, r_s, H) = r_x^4 r_y \mathsf{\tilde{D}}_{11}(r, r_s, H) + 6 r_x^2 r_y \mathsf{\tilde{D}}_{9}(r, r_s, H) + 3 r_y \mathsf{\tilde{D}}_{7}(r, r_s, H) \nonumber \end{align} \begin{align} \mathsf{D}_{320}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^3 \partial r_y^2} \varphi (\mathbf{r}, r_s, H) = r_x^3 r_y^2 \mathsf{\tilde{D}}_{11}(r, r_s, H) + r_x^3 \mathsf{\tilde{D}}_{9}(r, r_s, H) + 3 r_x r_y^2 \mathsf{\tilde{D}}_{9}(r, r_s, H) + 3 r_x \mathsf{\tilde{D}}_{7}(r, r_s, H) \nonumber \end{align} \begin{align} \mathsf{D}_{311}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^3 \partial r_y \partial r_z} \varphi (\mathbf{r}, r_s, H) = r_x^3 r_y r_z \mathsf{\tilde{D}}_{11}(r, r_s, H) + 3 r_x r_y r_z \mathsf{\tilde{D}}_{9}(r, r_s, H) \nonumber \end{align} \begin{align} \mathsf{D}_{221}(\mathbf{r}) &= \frac{\partial^5}{\partial r_x^2 \partial r_y^2 \partial r_z} \varphi (\mathbf{r}, r_s, H) = r_x^2 r_y^2 r_z \mathsf{\tilde{D}}_{11}(r, r_s, H) + r_x^2 r_z \mathsf{\tilde{D}}_{9}(r, r_s, H) + r_y^2 r_z \mathsf{\tilde{D}}_{9}(r, r_s, H) + r_z \mathsf{\tilde{D}}_{7}(r, r_s, H) \nonumber \end{align} \end{comment}