/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2015 Matthieu Schaller (schaller@strw.leidenuniv.nl).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#include "swift.h"
#include
#include
/**
* @brief Test the kick-drift-kick leapfrog integration
* via a Sun-Earth simulation
*/
int main(int argc, char *argv[]) {
struct cell c;
int i;
/* Orbital parameters */
int N_orbits = 8; /* Number of orbits */
float G = 6.67384e-11; /* Newton's constant */
float M_sun = 1.9885e30; /* Sun mass [kg] */
float M_earth = 5.97219e24; /* Earth mass [kg] */
float r_max = 152097701000.; /* [m] */
float r_min = 147098074000.; /* [m] */
float v_max = 30287.; /* [m/s] */
// float v_min = 29291.; /* [m/s] */
/* Derived quantities */
float e = (r_max - r_min) / (r_max + r_min); /* Eccentricity */
float b = sqrtf(r_max * r_min); /* Semi-minor axis */
float p = b * sqrtf(1 - e * e); /* Semi-lactus rectum */
float a = p / (1 - e * e); /* Semi-major axis */
float T = sqrtf(4 * M_PI * M_PI * a * a * a /
(G * (M_sun + M_earth))); /* Period [s] */
/* Print some info */
message("Semi-major axis: a=%e [m]", a);
message("Semi-minor axis: b=%e [m]", b);
message("Eccentricity e=%f", e);
message("Period T=%f [s] = %f days", T, T / (60 * 60 * 24));
/* Time-step size */
float dt = 0.001 * T;
int N = N_orbits * T / dt;
message("Running for %d steps with dt=%e", N, dt);
/* Create a particle */
struct part *parts = NULL;
parts = (struct part *)malloc(sizeof(struct part));
bzero(parts, sizeof(struct part));
struct xpart *xparts = NULL;
xparts = (struct xpart *)malloc(sizeof(struct xpart));
bzero(xparts, sizeof(struct xpart));
/* Put the particle on the orbit */
parts[0].x[0] = r_max;
parts[0].x[1] = 0.;
parts[0].x[2] = 0.;
parts[0].v[0] = 0.;
parts[0].v[1] = v_max;
parts[0].v[2] = 0.;
xparts[0].v_full[0] = 0.;
xparts[0].v_full[1] = v_max;
xparts[0].v_full[2] = 0.;
/* Set the particle in the cell */
c.hydro.parts = parts;
c.hydro.xparts = xparts;
c.hydro.count = 1;
c.split = 0;
/* Create an engine and a fake runner */
struct runner run;
struct engine eng;
run.e = ŋ
eng.time = 0.;
eng.time_begin = 0.;
eng.time_end = N_orbits * T;
eng.dt_min = dt; /* This forces the time-step to be dt */
eng.dt_max = dt; /* irrespective of the state of the particle */
/* Simulate ! */
for (i = 0; i < N; i++) {
/* Move forward in time */
eng.time_old = eng.time;
eng.time += dt;
/* Compute gravitational acceleration */
float r2 = c.hydro.parts[0].x[0] * c.hydro.parts[0].x[0] +
c.hydro.parts[0].x[1] * c.hydro.parts[0].x[1];
float r = sqrtf(r2);
c.hydro.parts[0].a_hydro[0] =
-(G * M_sun * c.hydro.parts[0].x[0] / r * r * r);
c.hydro.parts[0].a_hydro[1] =
-(G * M_sun * c.hydro.parts[0].x[1] / r * r * r);
/* Kick... */
runner_do_kick2(&run, &c, 0);
}
/* Clean-up */
free(parts);
free(xparts);
return 0;
}