/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2016 Matthieu Schaller (schaller@strw.leidenuniv.nl).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#include
/* Local includes. */
#include "swift.h"
#include "timestep_limiter_iact.h"
/* System includes. */
#include
#include
#include
#include
void print_bytes(void *p, size_t len) {
printf("(");
for (size_t i = 0; i < len; ++i) {
printf("%02x", ((unsigned char *)p)[i]);
if (i % 4 == 3) printf("|");
}
printf(")\n");
}
void test(void) {
/* Start with some values for the cosmological parameters */
const float a = (float)random_uniform(0.8, 1.);
const float H = 1.f;
const float mu_0 = 4. * M_PI;
const integertime_t ti_current = 1;
const double time_base = 1e-5;
/* Create two random particles (don't do this at home !) */
struct part pi, pj;
for (size_t i = 0; i < sizeof(struct part) / sizeof(float); ++i) {
*(((float *)&pi) + i) = (float)random_uniform(0., 2.);
*(((float *)&pj) + i) = (float)random_uniform(0., 2.);
}
/* Make the particle smoothing length and position reasonable */
for (size_t i = 0; i < 3; ++i) pi.x[i] = random_uniform(-1., 1.);
for (size_t i = 0; i < 3; ++i) pj.x[i] = random_uniform(-1., 1.);
pi.h = 2.f;
pj.h = 2.f;
pi.id = 1ll;
pj.id = 2ll;
pi.time_bin = 1;
pj.time_bin = 1;
#if defined(GIZMO_MFV_SPH)
/* Give the primitive variables sensible values, since the Riemann solver does
not like negative densities and pressures */
pi.rho = random_uniform(0.1f, 1.0f);
pi.v[0] = random_uniform(-10.0f, 10.0f);
pi.v[1] = random_uniform(-10.0f, 10.0f);
pi.v[2] = random_uniform(-10.0f, 10.0f);
pi.P = random_uniform(0.1f, 1.0f);
pj.rho = random_uniform(0.1f, 1.0f);
pj.v[0] = random_uniform(-10.0f, 10.0f);
pj.v[1] = random_uniform(-10.0f, 10.0f);
pj.v[2] = random_uniform(-10.0f, 10.0f);
pj.P = random_uniform(0.1f, 1.0f);
/* make gradients zero */
pi.gradients.rho[0] = 0.0f;
pi.gradients.rho[1] = 0.0f;
pi.gradients.rho[2] = 0.0f;
pi.gradients.v[0][0] = 0.0f;
pi.gradients.v[0][1] = 0.0f;
pi.gradients.v[0][2] = 0.0f;
pi.gradients.v[1][0] = 0.0f;
pi.gradients.v[1][1] = 0.0f;
pi.gradients.v[1][2] = 0.0f;
pi.gradients.v[2][0] = 0.0f;
pi.gradients.v[2][1] = 0.0f;
pi.gradients.v[2][2] = 0.0f;
pi.gradients.P[0] = 0.0f;
pi.gradients.P[1] = 0.0f;
pi.gradients.P[2] = 0.0f;
pj.gradients.rho[0] = 0.0f;
pj.gradients.rho[1] = 0.0f;
pj.gradients.rho[2] = 0.0f;
pj.gradients.v[0][0] = 0.0f;
pj.gradients.v[0][1] = 0.0f;
pj.gradients.v[0][2] = 0.0f;
pj.gradients.v[1][0] = 0.0f;
pj.gradients.v[1][1] = 0.0f;
pj.gradients.v[1][2] = 0.0f;
pj.gradients.v[2][0] = 0.0f;
pj.gradients.v[2][1] = 0.0f;
pj.gradients.v[2][2] = 0.0f;
pj.gradients.P[0] = 0.0f;
pj.gradients.P[1] = 0.0f;
pj.gradients.P[2] = 0.0f;
#endif
/* Make an xpart companion */
struct xpart xpi, xpj;
bzero(&xpi, sizeof(struct xpart));
bzero(&xpj, sizeof(struct xpart));
/* Make some copies */
struct part pi2, pj2;
memcpy(&pi2, &pi, sizeof(struct part));
memcpy(&pj2, &pj, sizeof(struct part));
int i_not_ok = memcmp(&pi, &pi2, sizeof(struct part));
int j_not_ok = memcmp(&pj, &pj2, sizeof(struct part));
if (i_not_ok) error("Particles 'pi' do not match after copy");
if (j_not_ok) error("Particles 'pj' do not match after copy");
/* Compute distance vector */
float dx[3];
dx[0] = pi.x[0] - pj.x[0];
dx[1] = pi.x[1] - pj.x[1];
dx[2] = pi.x[2] - pj.x[2];
float r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
/* --- Test the density loop --- */
/* Call the symmetric version */
runner_iact_density(r2, dx, pi.h, pj.h, &pi, &pj, a, H);
runner_iact_mhd_density(r2, dx, pi.h, pj.h, &pi, &pj, mu_0, a, H);
runner_iact_chemistry(r2, dx, pi.h, pj.h, &pi, &pj, a, H);
runner_iact_pressure_floor(r2, dx, pi.h, pj.h, &pi, &pj, a, H);
runner_iact_star_formation(r2, dx, pi.h, pj.h, &pi, &pj, a, H);
runner_iact_sink(r2, dx, pi.h, pj.h, &pi, &pj, a, H);
/* Call the non-symmetric version */
runner_iact_nonsym_density(r2, dx, pi2.h, pj2.h, &pi2, &pj2, a, H);
runner_iact_nonsym_mhd_density(r2, dx, pi2.h, pj2.h, &pi2, &pj2, mu_0, a, H);
runner_iact_nonsym_chemistry(r2, dx, pi2.h, pj2.h, &pi2, &pj2, a, H);
runner_iact_nonsym_pressure_floor(r2, dx, pi2.h, pj2.h, &pi2, &pj2, a, H);
runner_iact_nonsym_star_formation(r2, dx, pi2.h, pj2.h, &pi2, &pj2, a, H);
runner_iact_nonsym_sink(r2, dx, pi2.h, pj2.h, &pi2, &pj2, a, H);
dx[0] = -dx[0];
dx[1] = -dx[1];
dx[2] = -dx[2];
runner_iact_nonsym_density(r2, dx, pj2.h, pi2.h, &pj2, &pi2, a, H);
runner_iact_nonsym_mhd_density(r2, dx, pj2.h, pi2.h, &pj2, &pi2, mu_0, a, H);
runner_iact_nonsym_chemistry(r2, dx, pj2.h, pi2.h, &pj2, &pi2, a, H);
runner_iact_nonsym_pressure_floor(r2, dx, pj2.h, pi2.h, &pj2, &pi2, a, H);
runner_iact_nonsym_star_formation(r2, dx, pj2.h, pi2.h, &pj2, &pi2, a, H);
runner_iact_nonsym_sink(r2, dx, pj2.h, pi2.h, &pj2, &pi2, a, H);
/* Check that the particles are the same */
i_not_ok = memcmp(&pi, &pi2, sizeof(struct part));
j_not_ok = memcmp(&pj, &pj2, sizeof(struct part));
if (i_not_ok) {
printParticle_single(&pi, &xpi);
printParticle_single(&pi2, &xpi);
print_bytes(&pi, sizeof(struct part));
print_bytes(&pi2, sizeof(struct part));
error("Particles 'pi' do not match after density (byte = %d)", i_not_ok);
}
if (j_not_ok) {
printParticle_single(&pj, &xpj);
printParticle_single(&pj2, &xpj);
print_bytes(&pj, sizeof(struct part));
print_bytes(&pj2, sizeof(struct part));
error("Particles 'pj' do not match after density (byte = %d)", j_not_ok);
}
/* --- Test the gradient loop --- */
#ifdef EXTRA_HYDRO_LOOP
/* Call the symmetric version */
runner_iact_gradient(r2, dx, pi.h, pj.h, &pi, &pj, a, H);
runner_iact_mhd_gradient(r2, dx, pi.h, pj.h, &pi, &pj, mu_0, a, H);
/* Call the non-symmetric version */
runner_iact_nonsym_gradient(r2, dx, pi2.h, pj2.h, &pi2, &pj2, a, H);
runner_iact_nonsym_mhd_gradient(r2, dx, pi2.h, pj2.h, &pi2, &pj2, mu_0, a, H);
dx[0] = -dx[0];
dx[1] = -dx[1];
dx[2] = -dx[2];
runner_iact_nonsym_gradient(r2, dx, pj2.h, pi2.h, &pj2, &pi2, a, H);
runner_iact_nonsym_mhd_gradient(r2, dx, pj2.h, pi2.h, &pj2, &pi2, mu_0, a, H);
i_not_ok = memcmp((char *)&pi, (char *)&pi2, sizeof(struct part));
j_not_ok = memcmp((char *)&pj, (char *)&pj2, sizeof(struct part));
if (i_not_ok) {
printParticle_single(&pi, &xpi);
printParticle_single(&pi2, &xpi);
print_bytes(&pi, sizeof(struct part));
print_bytes(&pi2, sizeof(struct part));
error("Particles 'pi' do not match after gradient (byte = %d)", i_not_ok);
}
if (j_not_ok) {
printParticle_single(&pj, &xpj);
printParticle_single(&pj2, &xpj);
print_bytes(&pj, sizeof(struct part));
print_bytes(&pj2, sizeof(struct part));
error("Particles 'pj' do not match after gradient (byte = %d)", j_not_ok);
}
#endif
/* --- Test the force loop --- */
/* Call the symmetric version */
runner_iact_force(r2, dx, pi.h, pj.h, &pi, &pj, a, H);
runner_iact_mhd_force(r2, dx, pi.h, pj.h, &pi, &pj, mu_0, a, H);
runner_iact_diffusion(r2, dx, pi.h, pj.h, &pi, &pj, a, H, time_base,
ti_current, NULL, /*with_cosmology=*/0);
runner_iact_timebin(r2, dx, pi.h, pj.h, &pi, &pj, a, H);
/* Call the non-symmetric version */
runner_iact_nonsym_force(r2, dx, pi2.h, pj2.h, &pi2, &pj2, a, H);
runner_iact_nonsym_mhd_force(r2, dx, pi2.h, pj2.h, &pi2, &pj2, mu_0, a, H);
runner_iact_nonsym_diffusion(r2, dx, pi2.h, pj2.h, &pi2, &pj2, a, H,
time_base, ti_current, NULL,
/*with_cosmology=*/0);
runner_iact_nonsym_timebin(r2, dx, pi2.h, pj2.h, &pi2, &pj2, a, H);
dx[0] = -dx[0];
dx[1] = -dx[1];
dx[2] = -dx[2];
runner_iact_nonsym_force(r2, dx, pj2.h, pi2.h, &pj2, &pi2, a, H);
runner_iact_nonsym_mhd_force(r2, dx, pj2.h, pi2.h, &pj2, &pi2, mu_0, a, H);
runner_iact_nonsym_diffusion(r2, dx, pj2.h, pi2.h, &pj2, &pi2, a, H,
time_base, ti_current, NULL,
/*with_cosmology=*/0);
runner_iact_nonsym_timebin(r2, dx, pj2.h, pi2.h, &pj2, &pi2, a, H);
/* Check that the particles are the same */
#if defined(GIZMO_MFV_SPH)
i_not_ok = 0;
j_not_ok = 0;
for (size_t i = 0; i < sizeof(struct part) / sizeof(float); ++i) {
/* try this first to avoid dealing with NaNs and infinities */
int check_i = memcmp((float *)&pi + i, (float *)&pi2 + i, sizeof(float));
int check_j = memcmp((float *)&pj + i, (float *)&pj2 + i, sizeof(float));
if (!check_i && !check_j) continue;
if (check_i) {
/* allow some wiggle room for roundoff errors */
float aa = *(((float *)&pi) + i);
float bb = *(((float *)&pi2) + i);
int a_is_not_b;
if ((aa + bb)) {
a_is_not_b = (fabs((aa - bb) / (aa + bb)) > 1.e-4);
} else {
a_is_not_b = !(aa == 0.0f);
}
if (a_is_not_b) {
message("%.8e, %.8e, %lu", aa, bb, i);
}
i_not_ok |= a_is_not_b;
}
if (check_j) {
/* allow some wiggle room for roundoff errors */
float cc = *(((float *)&pj) + i);
float dd = *(((float *)&pj2) + i);
int c_is_not_d;
if ((cc + dd)) {
c_is_not_d = (fabs((cc - dd) / (cc + dd)) > 1.e-4);
} else {
c_is_not_d = !(cc == 0.0f);
}
if (c_is_not_d) {
message("%.8e, %.8e, %lu", cc, dd, i);
}
j_not_ok |= c_is_not_d;
}
}
#else
i_not_ok = memcmp((char *)&pi, (char *)&pi2, sizeof(struct part));
j_not_ok = memcmp((char *)&pj, (char *)&pj2, sizeof(struct part));
#endif
if (i_not_ok) {
printParticle_single(&pi, &xpi);
printParticle_single(&pi2, &xpi);
print_bytes(&pi, sizeof(struct part));
print_bytes(&pi2, sizeof(struct part));
error("Particles 'pi' do not match after force (byte = %d)", i_not_ok);
}
if (j_not_ok) {
printParticle_single(&pj, &xpj);
printParticle_single(&pj2, &xpj);
print_bytes(&pj, sizeof(struct part));
print_bytes(&pj2, sizeof(struct part));
error("Particles 'pj' do not match after force (byte = %d)", j_not_ok);
}
}
int main(int argc, char *argv[]) {
/* Initialize CPU frequency, this also starts time. */
unsigned long long cpufreq = 0;
clocks_set_cpufreq(cpufreq);
/* Choke on FPEs */
#ifdef HAVE_FE_ENABLE_EXCEPT
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
/* Get some randomness going */
const int seed = time(NULL);
message("Seed = %d", seed);
srand(seed);
for (int i = 0; i < 100; ++i) {
message("Random test %d/100", i);
test();
}
message("All good");
return 0;
}