/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2019 Matthieu Schaller (schaller@strw.leidenuniv.nl)
* 2019 Folkert Nobels (nobels@strw.leidenuniv.nl)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
/* Config parameters. */
#include
/* System includes. */
#include
/* Local headers. */
#include "swift.h"
/**
* @brief Compute the Pearson correlation coefficient for two sets of numbers
*
* The pearson correlation coefficient between two sets of numbers can be
* calculated as:
*
* - *
* r_xy = ----------------------
* (var(x) * var(y))^.5
*
* In the case that both sets are purely uncorrelated the value of the
* Pearson correlation function is expected to be close to 0. In the case that
* there is positive correlation r_xy > 0 and in the case of negative
* correlation, the function has r_xy < 0.
*
* @param mean1 average of first series of numbers
* @param mean2 average of second series of numbers
* @param total12 sum of x_i * y_i of both series of numbers
* @param var1 variance of the first series of numbers
* @param var2 variance of the second series of numbers
* @param counter number of elements in both series
* @return the Pearson correlation coefficient
* */
double pearsonfunc(double mean1, double mean2, double total12, double var1,
double var2, int counter) {
const double mean12 = total12 / (double)counter;
const double correlation = (mean12 - mean1 * mean2) / sqrt(var1 * var2);
return fabs(correlation);
}
/**
* @brief Test to check that the pseodo-random numbers in SWIFT are random
* enough for our purpose.
*
* The test initializes with the current time and than creates 20 ID numbers
* it runs the test using these 20 ID numbers. Using these 20 ID numbers it
* Checks 4 different things:
* 1. The mean and variance are correct for random numbers generated by this
* ID number.
* 2. The random numbers from this ID number do not cause correlation in time.
* Correlation is checked using the Pearson correlation coefficient which
* should be sufficiently close to zero.
* 3. A small offset in ID number of 2, doesn't cause correlation between
* the two sets of random numbers (again with the Pearson correlation
* coefficient) and the mean and variance of this set is
* also correct.
* 4. Different physical processes in random.h are also uncorrelated and
* produce the correct mean and variance as expected. Again the correlation
* is calculated using the Pearson correlation coefficient.
*
* More information about the Pearson correlation coefficient can be found in
* the function pearsonfunc above this function.
*
* @param argc Unused
* @param argv Unused
* @return 0 if everything is fine, 1 if random numbers are not random enough.
*/
int main(int argc, char* argv[]) {
/* Initialize CPU frequency, this also starts time. */
unsigned long long cpufreq = 0;
clocks_set_cpufreq(cpufreq);
/* Choke on FPEs */
#ifdef HAVE_FE_ENABLE_EXCEPT
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
/* Get some randomness going */
const int seed = time(NULL);
message("Seed = %d", seed);
srand(seed);
/* Log the swift random seed */
message("SWIFT random seed = %d", SWIFT_RANDOM_SEED_XOR);
/* Time-step size */
const int time_bin = 33;
/* Try a few different values for the ID */
for (int i = 0; i < 10; ++i) {
const long long id = rand() * (1LL << 31) + rand();
const integertime_t increment = (1LL << time_bin);
const long long idoffset = id + 2;
message("Testing id=%lld time_bin=%d", id, time_bin);
double total = 0., total2 = 0.;
int count = 0;
/* Pearson correlation variables for different times */
double sum_previous_current = 0.;
double previous = 0.;
/* Pearson correlation for two different IDs */
double pearsonIDs = 0.;
double totalID = 0.;
double total2ID = 0.;
/* Pearson correlation for different processes */
double pearson_star_sf_1 = 0.;
double pearson_star_sf_2 = 0.;
double pearson_star_se = 0.;
double pearson_star_bh = 0.;
double pearson_sf_1_se = 0.;
double pearson_sf_1_bh = 0.;
double pearson_se_bh = 0.;
/* Calculate the mean and for these processes */
double total_sf_1 = 0.;
double total_sf_2 = 0.;
double total_se = 0.;
double total_bh = 0.;
double total2_sf_1 = 0.;
double total2_sf_2 = 0.;
double total2_se = 0.;
double total2_bh = 0.;
/* Check that the numbers are uniform over the full-range of useful
* time-steps */
for (integertime_t ti_current = 0LL; ti_current < max_nr_timesteps;
ti_current += increment) {
ti_current += increment;
const double r =
random_unit_interval(id, ti_current, random_number_star_formation);
if (r < 0.0 || r >= 1.0) {
error("Generated random value %f is not in [0, 1).", r);
}
total += r;
total2 += r * r;
count++;
/* Calculate for correlation between time.
* For this we use the pearson correlation of time i and i-1 */
sum_previous_current += r * previous;
previous = r;
/* Calculate if there is a correlation between different ids */
const double r_2ndid = random_unit_interval(idoffset, ti_current,
random_number_star_formation);
if (r_2ndid < 0.0 || r_2ndid >= 1.0) {
error("Generated random value %f is not in [0, 1).", r_2ndid);
}
/* Pearson correlation for small different IDs */
pearsonIDs += r * r_2ndid;
totalID += r_2ndid;
total2ID += r_2ndid * r_2ndid;
/* Calculate random numbers for the different processes and check
* that they are uncorrelated */
const double r_sf_1 = random_unit_interval(
id, ti_current, random_number_stellar_feedback_1);
if (r_sf_1 < 0.0 || r_sf_1 >= 1.0) {
error("Generated random value %f is not in [0, 1).", r_sf_1);
}
const double r_sf_2 = random_unit_interval(
id, ti_current, random_number_stellar_feedback_2);
if (r_sf_2 < 0.0 || r_sf_2 >= 1.0) {
error("Generated random value %f is not in [0, 1).", r_sf_2);
}
const double r_se = random_unit_interval(
id, ti_current, random_number_stellar_enrichment);
if (r_se < 0.0 || r_se >= 1.0) {
error("Generated random value %f is not in [0, 1).", r_se);
}
const double r_bh =
random_unit_interval(id, ti_current, random_number_BH_feedback);
if (r_bh < 0.0 || r_bh >= 1.0) {
error("Generated random value %f is not in [0, 1).", r_bh);
}
/* Calculate the correlation between the different processes */
total_sf_1 += r_sf_1;
total_sf_2 += r_sf_2;
total_se += r_se;
total_bh += r_bh;
total2_sf_1 += r_sf_1 * r_sf_1;
total2_sf_2 += r_sf_2 * r_sf_2;
total2_se += r_se * r_se;
total2_bh += r_bh * r_bh;
pearson_star_sf_1 += r * r_sf_1;
pearson_star_sf_2 += r * r_sf_2;
pearson_star_se += r * r_se;
pearson_star_bh += r * r_bh;
pearson_sf_1_se += r_sf_1 * r_se;
pearson_sf_1_bh += r_sf_1 * r_bh;
pearson_se_bh += r_se * r_bh;
}
const double mean = total / (double)count;
const double var = total2 / (double)count - mean * mean;
/* Pearson correlation calculation for different times */
// const double mean_xy = sum_previous_current / ((double)count - 1.f);
// const double correlation = (mean_xy - mean * mean) / var;
const double correlation =
pearsonfunc(mean, mean, sum_previous_current, var, var, count - 1);
/* Mean for different IDs */
const double meanID = totalID / (double)count;
const double varID = total2ID / (double)count - meanID * meanID;
/* Pearson correlation between different IDs*/
const double correlationID =
pearsonfunc(mean, meanID, pearsonIDs, var, varID, count);
/* Mean and for different processes */
const double mean_sf_1 = total_sf_1 / (double)count;
const double mean_sf_2 = total_sf_2 / (double)count;
const double mean_se = total_se / (double)count;
const double mean_bh = total_bh / (double)count;
const double var_sf_1 = total2_sf_1 / (double)count - mean_sf_1 * mean_sf_1;
const double var_sf_2 = total2_sf_2 / (double)count - mean_sf_2 * mean_sf_2;
const double var_se = total2_se / (double)count - mean_se * mean_se;
const double var_bh = total2_bh / (double)count - mean_bh * mean_bh;
/* Correlation between different processes */
const double corr_star_sf_1 =
pearsonfunc(mean, mean_sf_1, pearson_star_sf_1, var, var_sf_1, count);
const double corr_star_sf_2 =
pearsonfunc(mean, mean_sf_2, pearson_star_sf_2, var, var_sf_2, count);
const double corr_star_se =
pearsonfunc(mean, mean_se, pearson_star_se, var, var_se, count);
const double corr_star_bh =
pearsonfunc(mean, mean_bh, pearson_star_bh, var, var_bh, count);
const double corr_sf_1_se = pearsonfunc(mean_sf_1, mean_se, pearson_sf_1_se,
var_sf_1, var_se, count);
const double corr_sf_1_bh = pearsonfunc(mean_sf_1, mean_bh, pearson_sf_1_bh,
var_sf_1, var_bh, count);
const double corr_se_bh =
pearsonfunc(mean_se, mean_bh, pearson_se_bh, var_se, var_bh, count);
/* Verify that the mean and variance match the expected values for a uniform
* distribution */
/* Set the allowed standard deviation */
const double std_check = 5.;
/* The mean is expected to deviate a maximum of std_check * std / sqrt(N) */
const double tolmean = std_check / sqrtf(12.f * count);
/* the variance is expected to deviate a maximum of std_check * variance
* * sqrt(2/(n-1)) */
const double tolvar =
std_check * sqrtf(2.f / (12.f * ((double)count - 1.f)));
/* The correlation coefficient is expected to deviate sqrt(1-R^2)
* / sqrt(n-2), in our case = 0, so we get 1/sqrt(n-2) */
const double tolcorr = std_check / sqrtf((double)count - 2.);
if ((fabs(mean - 0.5) > tolmean) || (fabs(var - 1. / 12.) > tolvar) ||
(fabs(correlation) > tolcorr) || (fabs(correlationID) > tolcorr) ||
(fabs(meanID - 0.5) > tolmean) || (fabs(varID - 1. / 12.) > tolvar) ||
(fabs(corr_star_sf_1) > tolcorr) || (fabs(corr_star_sf_2) > tolcorr) ||
(fabs(corr_star_se) > tolcorr) || (fabs(corr_star_bh) > tolcorr) ||
(fabs(corr_sf_1_se) > tolcorr) || (fabs(corr_sf_1_bh) > tolcorr) ||
(fabs(corr_se_bh) > tolcorr) || (fabs(mean_sf_1 - 0.5) > tolmean) ||
(fabs(mean_sf_2 - 0.5) > tolmean) || (fabs(mean_se - 0.5) > tolmean) ||
(fabs(mean_bh - 0.5) > tolmean) ||
(fabs(var_sf_1 - 1. / 12.) > tolvar) ||
(fabs(var_sf_2 - 1. / 12.) > tolvar) ||
(fabs(var_se - 1. / 12.) > tolvar) ||
(fabs(var_bh - 1. / 12.) > tolvar)) {
message("Test failed!");
message("Global result:");
message("Result: count=%d mean=%f var=%f, correlation=%f", count, mean,
var, correlation);
message("Expected: count=%d mean=%f var=%f, correlation=%f", count, 0.5f,
1. / 12., 0.);
message("Max difference: mean=%f var=%f, correlation=%f",
tolmean, tolvar, tolcorr);
message("Difference: mean=%f var=%f, correlation=%f",
fabs(mean - 0.5f), fabs(var - 1. / 12.), fabs(correlation));
message("ID part");
message(
"Result: count=%d mean=%f var=%f"
" correlation=%f",
count, meanID, varID, correlationID);
message(
"Expected: count=%d mean=%f var=%f"
" correlation=%f",
count, .5f, 1. / 12., 0.);
message("Max difference: mean=%f var=%f, correlation=%f",
tolmean, tolvar, tolcorr);
message("Difference: mean=%f var=%f, correlation=%f",
fabs(meanID - 0.5f), fabs(varID - 1. / 12.), fabs(correlation));
message("Different physical processes:");
message(
"Means: stars=%f stellar feedback=%f stellar "
" enrichment=%f black holes=%f",
mean, mean_sf_1, mean_se, mean_bh);
message(
"Expected: stars=%f stellar feedback=%f stellar "
" enrichment=%f black holes=%f",
.5f, .5f, .5f, .5f);
message(
"Max diff: stars=%f stellar feedback=%f stellar "
" enrichment=%f black holes=%f",
tolmean, tolmean, tolmean, tolmean);
message(
"Diff: stars=%f stellar feedback=%f stellar "
" enrichment=%f black holes=%f",
fabs(mean - .5f), fabs(mean_sf_1 - .5f), fabs(mean_se - .5f),
fabs(mean_bh - .5f));
message(" ");
message(
"Var: stars=%f stellar feedback=%f stellar "
" enrichment=%f black holes=%f",
var, var_sf_1, var_se, var_bh);
message(
"Expected: stars=%f stellar feedback=%f stellar "
" enrichment=%f black holes=%f",
1. / 12., 1. / 12., 1 / 12., 1. / 12.);
message(
"Max diff: stars=%f stellar feedback=%f stellar "
" enrichment=%f black holes=%f",
tolvar, tolvar, tolvar, tolvar);
message(
"Diff: stars=%f stellar feedback=%f stellar "
" enrichment=%f black holes=%f",
fabs(var - 1. / 12.), fabs(var_sf_1 - 1. / 12.),
fabs(var_se - 1. / 12.), fabs(var_bh - 1. / 12.));
message(" ");
message(
"Correlation: stars-sf=%f stars-se=%f stars-bh=%f "
"sf-se=%f sf-bh=%f se-bh=%f",
corr_star_sf_1, corr_star_se, corr_star_bh, corr_sf_1_se,
corr_sf_1_bh, corr_se_bh);
message(
"Expected: stars-sf=%f stars-se=%f stars-bh=%f "
"sf-se=%f sf-bh=%f se-bh=%f",
0., 0., 0., 0., 0., 0.);
message(
"Max diff: stars-sf=%f stars-se=%f stars-bh=%f "
"sf-se=%f sf-bh=%f se-bh=%f",
tolcorr, tolcorr, tolcorr, tolcorr, tolcorr, tolcorr);
message(
"Diff: stars-sf1=%f stars-sf2=%f stars-se=%f stars-bh=%f "
"sf-se=%f sf-bh=%f se-bh=%f",
fabs(corr_star_sf_1), fabs(corr_star_sf_2), fabs(corr_star_se),
fabs(corr_star_bh), fabs(corr_sf_1_se), fabs(corr_sf_1_bh),
fabs(corr_se_bh));
return 1;
}
}
return 0;
}