/*******************************************************************************
* This file is part of SWIFT.
* Copyright (C) 2015 Matthieu Schaller (schaller@strw.leidenuniv.nl).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#include
/* Some standard headers. */
#include
#include
#include
#include
#include
/* Local includes */
#include "swift.h"
/* Other schemes need to be added here if they are not vectorized, otherwise
* this test will simply not compile. */
#if defined(GADGET2_SPH) && defined(WITH_VECTORIZATION)
#define array_align sizeof(float) * VEC_SIZE
#define ACC_THRESHOLD 1e-5
#ifndef IACT
#define IACT runner_iact_nonsym_density
#define IACT_VEC runner_iact_nonsym_1_vec_density
#define IACT_NAME "test_nonsym_density"
#define NUM_VEC_PROC_INT 1
#endif
/**
* @brief Constructs an array of particles in a valid state prior to
* a IACT_NONSYM and IACT_NONSYM_VEC call.
*
* @param count No. of particles to create
* @param offset The position of the particle offset from (0,0,0).
* @param spacing Particle spacing.
* @param h The smoothing length of the particles in units of the inter-particle
*separation.
* @param partId The running counter of IDs.
*/
struct part *make_particles(size_t count, double *offset, double spacing,
double h, long long *partId) {
struct part *particles;
if (posix_memalign((void **)&particles, part_align,
count * sizeof(struct part)) != 0) {
error("couldn't allocate particles, no. of particles: %d", (int)count);
}
bzero(particles, count * sizeof(struct part));
/* Construct the particles */
struct part *p;
/* Set test particle at centre of unit sphere. */
p = &particles[0];
/* Place the test particle at the centre of a unit sphere. */
p->x[0] = 0.0f;
p->x[1] = 0.0f;
p->x[2] = 0.0f;
p->h = h;
p->id = ++(*partId);
#if !defined(GIZMO_MFV_SPH)
p->mass = 1.0f;
#endif
/* Place rest of particles around the test particle
* with random position within a unit sphere. */
for (size_t i = 1; i < count; ++i) {
p = &particles[i];
/* Randomise positions within a unit sphere. */
p->x[0] = random_uniform(-1.0, 1.0);
p->x[1] = random_uniform(-1.0, 1.0);
p->x[2] = random_uniform(-1.0, 1.0);
/* Randomise velocities. */
p->v[0] = random_uniform(-0.05, 0.05);
p->v[1] = random_uniform(-0.05, 0.05);
p->v[2] = random_uniform(-0.05, 0.05);
p->h = h;
p->id = ++(*partId);
#if !defined(GIZMO_SPH)
p->mass = 1.0f;
#endif
}
return particles;
}
/**
* @brief Populates particle properties needed for the force calculation.
*/
void prepare_force(struct part *parts, size_t count) {
#if !defined(GIZMO_MFV_SPH) && !defined(MINIMAL_SPH) && \
!defined(PLANETARY_SPH) && !defined(HOPKINS_PU_SPH) && \
!defined(HOPKINS_PU_SPH_MONAGHAN) && !defined(ANARCHY_PU_SPH) && \
!defined(SPHENIX_SPH) && !defined(PHANTOM_SPH) && !defined(GASOLINE_SPH)
struct part *p;
for (size_t i = 0; i < count; ++i) {
p = &parts[i];
p->rho = i + 1;
p->force.balsara = random_uniform(0.0, 1.0);
p->force.P_over_rho2 = i + 1;
p->force.soundspeed = random_uniform(2.0, 3.0);
p->force.v_sig = 0.0f;
p->force.h_dt = 0.0f;
}
#endif
}
/**
* @brief Dumps all particle information to a file
*/
void dump_indv_particle_fields(char *fileName, struct part *p) {
FILE *file = fopen(fileName, "a");
fprintf(file,
"%6llu %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f "
"%8.5f "
"%8.5f %8.5f %13e %13e %13e %13e %13e %8.5f %8.5f\n",
p->id, p->x[0], p->x[1], p->x[2], p->v[0], p->v[1], p->v[2], p->h,
hydro_get_comoving_density(p),
#if defined(MINIMAL_SPH) || defined(PLANETARY_SPH) || defined(PHANTOM_SPH) || \
defined(GASOLINE_SPH)
0.f,
#else
p->density.div_v,
#endif
hydro_get_drifted_comoving_entropy(p),
hydro_get_drifted_comoving_internal_energy(p),
hydro_get_comoving_pressure(p), hydro_get_comoving_soundspeed(p),
p->a_hydro[0], p->a_hydro[1], p->a_hydro[2], p->force.h_dt,
#if defined(GADGET2_SPH)
p->force.v_sig, p->entropy_dt, 0.f
#elif defined(PHANTOM_SPH)
p->force.v_sig, 0.f, p->force.u_dt
#elif defined(MINIMAL_SPH) || defined(HOPKINS_PU_SPH) || \
defined(HOPKINS_PU_SPH_MONAGHAN) || defined(ANARCHY_PU_SPH) || \
defined(SPHENIX_SPH) || defined(PHANTOM_SPH) || defined(GASOLINE_SPH)
p->force.v_sig, 0.f, p->u_dt
#else
0.f, 0.f, 0.f
#endif
);
fclose(file);
}
/**
* @brief Creates a header for the output file
*/
void write_header(char *fileName) {
FILE *file = fopen(fileName, "w");
/* Write header */
fprintf(file,
"# %4s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %13s %13s "
"%13s %13s %13s %8s %8s\n",
"ID", "pos_x", "pos_y", "pos_z", "v_x", "v_y", "v_z", "h", "rho",
"div_v", "S", "u", "P", "c", "a_x", "a_y", "a_z", "h_dt", "v_sig",
"dS/dt", "du/dt");
fclose(file);
}
/**
* @brief Compares the vectorised result against
* the serial result of the interaction.
*
* @param serial_test_part Particle that has been updated serially
* @param serial_parts Particle array that has been interacted serially
* @param vec_test_part Particle that has been updated using vectors
* @param vec_parts Particle array to be interacted using vectors
* @param count No. of particles that have been interacted
*
* @return Non-zero value if difference found, 0 otherwise
*/
int check_results(struct part serial_test_part, struct part *serial_parts,
struct part vec_test_part, struct part *vec_parts,
int count) {
int result = 0;
result += compare_particles(&serial_test_part, &vec_test_part, ACC_THRESHOLD);
for (int i = 0; i < count; i++)
result += compare_particles(&serial_parts[i], &vec_parts[i], ACC_THRESHOLD);
return result;
}
/*
* @brief Calls the serial and vectorised version of the non-symmetrical density
* interaction.
*
* @param test_part Particle that will be updated
* @param parts Particle array to be interacted
* @param count No. of particles to be interacted
* @param serial_inter_func Serial interaction function to be called
* @param vec_inter_func Vectorised interaction function to be called
* @param runs No. of times to call interactions
* @param num_vec_proc No. of vectors to use to process interaction
*
*/
void test_interactions(struct part test_part, struct part *parts, size_t count,
char *filePrefix, int runs, int num_vec_proc) {
ticks serial_time = 0;
ticks vec_time = 0;
const float a = 1.f;
const float H = 0.f;
char serial_filename[200] = "";
char vec_filename[200] = "";
strcpy(serial_filename, filePrefix);
strcpy(vec_filename, filePrefix);
sprintf(serial_filename + strlen(serial_filename), "_serial.dat");
sprintf(vec_filename + strlen(vec_filename), "_%d_vec.dat", num_vec_proc);
write_header(serial_filename);
write_header(vec_filename);
struct part pi_serial, pi_vec;
struct part pj_serial[count], pj_vec[count];
float r2[count] __attribute__((aligned(array_align)));
float dx[3 * count] __attribute__((aligned(array_align)));
struct part *piq[count], *pjq[count];
for (size_t k = 0; k < count; k++) {
piq[k] = NULL;
pjq[k] = NULL;
}
float r2q[count] __attribute__((aligned(array_align)));
float hiq[count] __attribute__((aligned(array_align)));
float dxq[count] __attribute__((aligned(array_align)));
float dyq[count] __attribute__((aligned(array_align)));
float dzq[count] __attribute__((aligned(array_align)));
float mjq[count] __attribute__((aligned(array_align)));
float vixq[count] __attribute__((aligned(array_align)));
float viyq[count] __attribute__((aligned(array_align)));
float vizq[count] __attribute__((aligned(array_align)));
float vjxq[count] __attribute__((aligned(array_align)));
float vjyq[count] __attribute__((aligned(array_align)));
float vjzq[count] __attribute__((aligned(array_align)));
/* Call serial interaction a set number of times. */
for (int r = 0; r < runs; r++) {
/* Reset particle to initial setup */
pi_serial = test_part;
for (size_t i = 0; i < count; i++) pj_serial[i] = parts[i];
/* Perform serial interaction */
for (size_t i = 0; i < count; i++) {
/* Compute the pairwise distance. */
r2[i] = 0.0f;
for (int k = 0; k < 3; k++) {
int ind = (3 * i) + k;
dx[ind] = pi_serial.x[k] - pj_serial[i].x[k];
r2[i] += dx[ind] * dx[ind];
}
}
const ticks tic = getticks();
/* Perform serial interaction */
#ifdef __ICC
#pragma novector
#endif
for (size_t i = 0; i < count; i++) {
IACT(r2[i], &(dx[3 * i]), pi_serial.h, pj_serial[i].h, &pi_serial,
&pj_serial[i], a, H);
}
serial_time += getticks() - tic;
}
/* Dump result of serial interaction. */
dump_indv_particle_fields(serial_filename, &pi_serial);
for (size_t i = 0; i < count; i++)
dump_indv_particle_fields(serial_filename, &pj_serial[i]);
/* Call vector interaction a set number of times. */
for (int r = 0; r < runs; r++) {
/* Reset particle to initial setup */
pi_vec = test_part;
for (size_t i = 0; i < count; i++) pj_vec[i] = parts[i];
/* Setup arrays for vector interaction. */
for (size_t i = 0; i < count; i++) {
/* Compute the pairwise distance. */
float my_r2 = 0.0f;
float my_dx[3];
for (int k = 0; k < 3; k++) {
my_dx[k] = pi_vec.x[k] - pj_vec[i].x[k];
my_r2 += my_dx[k] * my_dx[k];
}
r2q[i] = my_r2;
dxq[i] = my_dx[0];
dyq[i] = my_dx[1];
dzq[i] = my_dx[2];
hiq[i] = pi_vec.h;
piq[i] = &pi_vec;
pjq[i] = &pj_vec[i];
mjq[i] = pj_vec[i].mass;
vixq[i] = pi_vec.v[0];
viyq[i] = pi_vec.v[1];
vizq[i] = pi_vec.v[2];
vjxq[i] = pj_vec[i].v[0];
vjyq[i] = pj_vec[i].v[1];
vjzq[i] = pj_vec[i].v[2];
}
/* Perform vector interaction. */
vector hi_vec, hi_inv_vec, vix_vec, viy_vec, viz_vec;
vector rhoSum, rho_dhSum, wcountSum, wcount_dhSum, div_vSum, curlvxSum,
curlvySum, curlvzSum;
mask_t mask, mask2;
rhoSum.v = vec_set1(0.f);
rho_dhSum.v = vec_set1(0.f);
wcountSum.v = vec_set1(0.f);
wcount_dhSum.v = vec_set1(0.f);
div_vSum.v = vec_set1(0.f);
curlvxSum.v = vec_set1(0.f);
curlvySum.v = vec_set1(0.f);
curlvzSum.v = vec_set1(0.f);
hi_vec.v = vec_load(&hiq[0]);
vix_vec.v = vec_load(&vixq[0]);
viy_vec.v = vec_load(&viyq[0]);
viz_vec.v = vec_load(&vizq[0]);
hi_inv_vec = vec_reciprocal(hi_vec);
vec_init_mask_true(mask);
vec_init_mask_true(mask2);
const ticks vec_tic = getticks();
for (size_t i = 0; i < count; i += num_vec_proc * VEC_SIZE) {
/* Interleave two vectors for interaction. */
if (num_vec_proc == 2) {
runner_iact_nonsym_2_vec_density(
&(r2q[i]), &(dxq[i]), &(dyq[i]), &(dzq[i]), (hi_inv_vec), (vix_vec),
(viy_vec), (viz_vec), &(vjxq[i]), &(vjyq[i]), &(vjzq[i]), &(mjq[i]),
&rhoSum, &rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum,
&curlvxSum, &curlvySum, &curlvzSum, mask, mask2, 0);
} else { /* Only use one vector for interaction. */
vector my_r2, my_dx, my_dy, my_dz;
my_r2.v = vec_load(&(r2q[i]));
my_dx.v = vec_load(&(dxq[i]));
my_dy.v = vec_load(&(dyq[i]));
my_dz.v = vec_load(&(dzq[i]));
runner_iact_nonsym_1_vec_density(
&my_r2, &my_dx, &my_dy, &my_dz, (hi_inv_vec), (vix_vec), (viy_vec),
(viz_vec), &(vjxq[i]), &(vjyq[i]), &(vjzq[i]), &(mjq[i]), &rhoSum,
&rho_dhSum, &wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum,
&curlvySum, &curlvzSum, mask);
}
}
VEC_HADD(rhoSum, piq[0]->rho);
VEC_HADD(rho_dhSum, piq[0]->density.rho_dh);
VEC_HADD(wcountSum, piq[0]->density.wcount);
VEC_HADD(wcount_dhSum, piq[0]->density.wcount_dh);
VEC_HADD(div_vSum, piq[0]->density.div_v);
VEC_HADD(curlvxSum, piq[0]->density.rot_v[0]);
VEC_HADD(curlvySum, piq[0]->density.rot_v[1]);
VEC_HADD(curlvzSum, piq[0]->density.rot_v[2]);
vec_time += getticks() - vec_tic;
}
/* Dump result of serial interaction. */
dump_indv_particle_fields(vec_filename, piq[0]);
for (size_t i = 0; i < count; i++)
dump_indv_particle_fields(vec_filename, pjq[i]);
/* Check serial results against the vectorised results. */
if (check_results(pi_serial, pj_serial, pi_vec, pj_vec, count))
message("Differences found...");
message("The serial interactions took : %.3f %s.",
clocks_from_ticks(serial_time / runs), clocks_getunit());
message("The vectorised interactions took : %.3f %s.",
clocks_from_ticks(vec_time / runs), clocks_getunit());
message("Speed up: %15fx.", (double)(serial_time) / vec_time);
}
/*
* @brief Calls the serial and vectorised version of the non-symmetrical force
* interaction.
*
* @param test_part Particle that will be updated
* @param parts Particle array to be interacted
* @param count No. of particles to be interacted
* @param serial_inter_func Serial interaction function to be called
* @param vec_inter_func Vectorised interaction function to be called
* @param runs No. of times to call interactions
*
*/
void test_force_interactions(struct part test_part, struct part *parts,
size_t count, char *filePrefix, int runs,
int num_vec_proc) {
ticks serial_time = 0;
ticks vec_time = 0;
FILE *file;
char serial_filename[200] = "";
char vec_filename[200] = "";
const float a = 1.f;
const float H = 0.f;
const float mu_0 = 4. * M_PI;
strcpy(serial_filename, filePrefix);
strcpy(vec_filename, filePrefix);
sprintf(serial_filename + strlen(serial_filename), "_serial.dat");
sprintf(vec_filename + strlen(vec_filename), "_%d_vec.dat", num_vec_proc);
write_header(serial_filename);
write_header(vec_filename);
struct part pi_serial, pi_vec;
struct part pj_serial[count], pj_vec[count];
float r2[count] __attribute__((aligned(array_align)));
float dx[3 * count] __attribute__((aligned(array_align)));
struct part *piq[count], *pjq[count];
for (size_t k = 0; k < count; k++) {
piq[k] = NULL;
pjq[k] = NULL;
}
float r2q[count] __attribute__((aligned(array_align)));
float dxq[count] __attribute__((aligned(array_align)));
float dyq[count] __attribute__((aligned(array_align)));
float dzq[count] __attribute__((aligned(array_align)));
float hiq[count] __attribute__((aligned(array_align)));
float vixq[count] __attribute__((aligned(array_align)));
float viyq[count] __attribute__((aligned(array_align)));
float vizq[count] __attribute__((aligned(array_align)));
float rhoiq[count] __attribute__((aligned(array_align)));
float grad_hiq[count] __attribute__((aligned(array_align)));
float pOrhoi2q[count] __attribute__((aligned(array_align)));
float balsaraiq[count] __attribute__((aligned(array_align)));
float ciq[count] __attribute__((aligned(array_align)));
float hj_invq[count] __attribute__((aligned(array_align)));
float mjq[count] __attribute__((aligned(array_align)));
float vjxq[count] __attribute__((aligned(array_align)));
float vjyq[count] __attribute__((aligned(array_align)));
float vjzq[count] __attribute__((aligned(array_align)));
float rhojq[count] __attribute__((aligned(array_align)));
float grad_hjq[count] __attribute__((aligned(array_align)));
float pOrhoj2q[count] __attribute__((aligned(array_align)));
float balsarajq[count] __attribute__((aligned(array_align)));
float cjq[count] __attribute__((aligned(array_align)));
/* Call serial interaction a set number of times. */
for (int r = 0; r < runs; r++) {
/* Reset particle to initial setup */
pi_serial = test_part;
for (size_t i = 0; i < count; i++) pj_serial[i] = parts[i];
/* Only dump data on first run. */
if (r == 0) {
/* Dump state of particles before serial interaction. */
dump_indv_particle_fields(serial_filename, &pi_serial);
for (size_t i = 0; i < count; i++)
dump_indv_particle_fields(serial_filename, &pj_serial[i]);
}
/* Perform serial interaction */
for (size_t i = 0; i < count; i++) {
/* Compute the pairwise distance. */
r2[i] = 0.0f;
for (int k = 0; k < 3; k++) {
int ind = (3 * i) + k;
dx[ind] = pi_serial.x[k] - pj_serial[i].x[k];
r2[i] += dx[ind] * dx[ind];
}
}
const ticks tic = getticks();
/* Perform serial interaction */
#ifdef __ICC
#pragma novector
#endif
for (size_t i = 0; i < count; i++) {
runner_iact_nonsym_force(r2[i], &(dx[3 * i]), pi_serial.h, pj_serial[i].h,
&pi_serial, &pj_serial[i], a, H);
runner_iact_nonsym_mhd_force(r2[i], &(dx[3 * i]), pi_serial.h,
pj_serial[i].h, &pi_serial, &pj_serial[i],
mu_0, a, H);
}
serial_time += getticks() - tic;
}
file = fopen(serial_filename, "a");
fprintf(file, "\n# PARTICLES AFTER INTERACTION:\n");
fclose(file);
/* Dump result of serial interaction. */
dump_indv_particle_fields(serial_filename, &pi_serial);
for (size_t i = 0; i < count; i++)
dump_indv_particle_fields(serial_filename, &pj_serial[i]);
/* Call vector interaction a set number of times. */
for (int r = 0; r < runs; r++) {
/* Reset particle to initial setup */
pi_vec = test_part;
for (size_t i = 0; i < count; i++) pj_vec[i] = parts[i];
/* Setup arrays for vector interaction. */
for (size_t i = 0; i < count; i++) {
/* Compute the pairwise distance. */
float my_r2 = 0.0f;
float my_dx[3];
for (int k = 0; k < 3; k++) {
my_dx[k] = pi_vec.x[k] - pj_vec[i].x[k];
my_r2 += my_dx[k] * my_dx[k];
}
piq[i] = &pi_vec;
pjq[i] = &pj_vec[i];
r2q[i] = my_r2;
dxq[i] = my_dx[0];
dyq[i] = my_dx[1];
dzq[i] = my_dx[2];
hiq[i] = pi_vec.h;
vixq[i] = pi_vec.v[0];
viyq[i] = pi_vec.v[1];
vizq[i] = pi_vec.v[2];
rhoiq[i] = pi_vec.rho;
grad_hiq[i] = pi_vec.force.f;
#if !defined(HOPKINS_PU_SPH) && !defined(HOPKINS_PU_SPH_MONAGHAN) && \
!defined(ANARCHY_PU_SPH) && !defined(SPHENIX_SPH) && \
!defined(GASOLINE_SPH)
pOrhoi2q[i] = pi_vec.force.P_over_rho2;
#endif
balsaraiq[i] = pi_vec.force.balsara;
ciq[i] = pi_vec.force.soundspeed;
hj_invq[i] = 1.f / pj_vec[i].h;
mjq[i] = pj_vec[i].mass;
vjxq[i] = pj_vec[i].v[0];
vjyq[i] = pj_vec[i].v[1];
vjzq[i] = pj_vec[i].v[2];
rhojq[i] = pj_vec[i].rho;
grad_hjq[i] = pj_vec[i].force.f;
#if !defined(HOPKINS_PU_SPH) && !defined(HOPKINS_PU_SPH_MONAGHAN) && \
!defined(ANARCHY_PU_SPH) && !defined(SPHENIX_SPH) && \
!defined(GASOLINE_SPH)
pOrhoj2q[i] = pj_vec[i].force.P_over_rho2;
#endif
balsarajq[i] = pj_vec[i].force.balsara;
cjq[i] = pj_vec[i].force.soundspeed;
}
/* Only dump data on first run. */
if (r == 0) {
/* Dump state of particles before vector interaction. */
dump_indv_particle_fields(vec_filename, piq[0]);
for (size_t i = 0; i < count; i++)
dump_indv_particle_fields(vec_filename, pjq[i]);
}
/* Perform vector interaction. */
vector hi_vec, hi_inv_vec, vix_vec, viy_vec, viz_vec, rhoi_vec, grad_hi_vec,
pOrhoi2_vec, balsara_i_vec, ci_vec;
vector a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum,
entropy_dtSum;
a_hydro_xSum.v = vec_setzero();
a_hydro_ySum.v = vec_setzero();
a_hydro_zSum.v = vec_setzero();
h_dtSum.v = vec_setzero();
v_sigSum.v = vec_setzero();
entropy_dtSum.v = vec_setzero();
hi_vec.v = vec_load(&hiq[0]);
vix_vec.v = vec_load(&vixq[0]);
viy_vec.v = vec_load(&viyq[0]);
viz_vec.v = vec_load(&vizq[0]);
rhoi_vec.v = vec_load(&rhoiq[0]);
grad_hi_vec.v = vec_load(&grad_hiq[0]);
pOrhoi2_vec.v = vec_load(&pOrhoi2q[0]);
balsara_i_vec.v = vec_load(&balsaraiq[0]);
ci_vec.v = vec_load(&ciq[0]);
hi_inv_vec = vec_reciprocal(hi_vec);
mask_t mask, mask2;
vec_init_mask_true(mask);
vec_init_mask_true(mask2);
const ticks vec_tic = getticks();
for (size_t i = 0; i < count; i += num_vec_proc * VEC_SIZE) {
if (num_vec_proc == 2) {
runner_iact_nonsym_2_vec_force(
&(r2q[i]), &(dxq[i]), &(dyq[i]), &(dzq[i]), (vix_vec), (viy_vec),
(viz_vec), rhoi_vec, grad_hi_vec, pOrhoi2_vec, balsara_i_vec,
ci_vec, &(vjxq[i]), &(vjyq[i]), &(vjzq[i]), &(rhojq[i]),
&(grad_hjq[i]), &(pOrhoj2q[i]), &(balsarajq[i]), &(cjq[i]),
&(mjq[i]), hi_inv_vec, &(hj_invq[i]), a, H, &a_hydro_xSum,
&a_hydro_ySum, &a_hydro_zSum, &h_dtSum, &v_sigSum, &entropy_dtSum,
mask, mask2, 0);
} else { /* Only use one vector for interaction. */
vector my_r2, my_dx, my_dy, my_dz, hj, hj_inv;
my_r2.v = vec_load(&(r2q[i]));
my_dx.v = vec_load(&(dxq[i]));
my_dy.v = vec_load(&(dyq[i]));
my_dz.v = vec_load(&(dzq[i]));
hj.v = vec_load(&hj_invq[i]);
hj_inv = vec_reciprocal(hj);
runner_iact_nonsym_1_vec_force(
&my_r2, &my_dx, &my_dy, &my_dz, vix_vec, viy_vec, viz_vec, rhoi_vec,
grad_hi_vec, pOrhoi2_vec, balsara_i_vec, ci_vec, &(vjxq[i]),
&(vjyq[i]), &(vjzq[i]), &(rhojq[i]), &(grad_hjq[i]), &(pOrhoj2q[i]),
&(balsarajq[i]), &(cjq[i]), &(mjq[i]), hi_inv_vec, hj_inv, a, H,
&a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum, &h_dtSum, &v_sigSum,
&entropy_dtSum, mask);
}
}
VEC_HADD(a_hydro_xSum, piq[0]->a_hydro[0]);
VEC_HADD(a_hydro_ySum, piq[0]->a_hydro[1]);
VEC_HADD(a_hydro_zSum, piq[0]->a_hydro[2]);
VEC_HADD(h_dtSum, piq[0]->force.h_dt);
VEC_HMAX(v_sigSum, piq[0]->force.v_sig);
#if !defined(HOPKINS_PU_SPH) && !defined(HOPKINS_PU_SPH_MONAGHAN) && \
!defined(ANARCHY_PU_SPH) && !defined(SPHENIX_SPH) && \
!defined(GASOLINE_SPH)
VEC_HADD(entropy_dtSum, piq[0]->entropy_dt);
#endif
vec_time += getticks() - vec_tic;
}
file = fopen(vec_filename, "a");
fprintf(file, "\n# PARTICLES AFTER INTERACTION:\n");
fclose(file);
/* Dump result of serial interaction. */
dump_indv_particle_fields(vec_filename, piq[0]);
for (size_t i = 0; i < count; i++)
dump_indv_particle_fields(vec_filename, pjq[i]);
/* Check serial results against the vectorised results. */
if (check_results(pi_serial, pj_serial, pi_vec, pj_vec, count))
message("Differences found...");
message("The serial interactions took : %.3f %s.",
clocks_from_ticks(serial_time / runs), clocks_getunit());
message("The vectorised interactions took : %.3f %s.",
clocks_from_ticks(vec_time / runs), clocks_getunit());
message("Speed up: %15fx.", (double)(serial_time) / vec_time);
}
/* And go... */
int main(int argc, char *argv[]) {
size_t runs = 10000;
double h = 1.0, spacing = 0.5;
double offset[3] = {0.0, 0.0, 0.0};
size_t count = 256;
/* Get some randomness going */
srand(0);
int c;
while ((c = getopt(argc, argv, "h:s:n:r:")) != -1) {
switch (c) {
case 'h':
sscanf(optarg, "%lf", &h);
break;
case 's':
sscanf(optarg, "%lf", &spacing);
break;
case 'n':
sscanf(optarg, "%zu", &count);
break;
case 'r':
sscanf(optarg, "%zu", &runs);
break;
case '?':
error("Unknown option.");
break;
}
}
if (h < 0 || spacing < 0) {
printf(
"\nUsage: %s [OPTIONS...]\n"
"\nGenerates a particle array with equal particle separation."
"\nThese are then interacted using runner_iact_density and "
"runner_iact_vec_density."
"\n\nOptions:"
"\n-h DISTANCE=1.2348 - Smoothing length in units of "
"\n-s SPACING=0.5 - Spacing between particles"
"\n-n NUMBER=9 - No. of particles",
argv[0]);
exit(1);
}
/* Correct count so that VEC_SIZE of particles interact with the test
* particle. */
count = count - (count % VEC_SIZE) + 1;
/* Build the infrastructure */
static long long partId = 0;
struct part test_particle;
struct part *particles = make_particles(count, offset, spacing, h, &partId);
test_particle = particles[0];
/* Call the non-sym density test. */
message("Testing %s interaction...", IACT_NAME);
test_interactions(test_particle, &particles[1], count - 1, IACT_NAME, runs,
1);
test_interactions(test_particle, &particles[1], count - 1, IACT_NAME, runs,
2);
prepare_force(particles, count);
test_force_interactions(test_particle, &particles[1], count - 1,
"test_nonsym_force", runs, 1);
test_force_interactions(test_particle, &particles[1], count - 1,
"test_nonsym_force", runs, 2);
return 0;
}
#else
int main(int argc, char *argv[]) { return 1; }
#endif