/******************************************************************************* * This file is part of SWIFT. * Copyright (C) 2016 Matthieu Schaller (schaller@strw.leidenuniv.nl). * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Config parameters. */ #include /* Some standard headers. */ #include #include #include #include #include /* Local headers. */ #include "swift.h" #if defined(WITH_VECTORIZATION) #define DOSELF2_NAME "runner_doself2_force_vec" #define DOPAIR2_NAME "runner_dopair2_force_vec" #endif #ifndef DOSELF2_NAME #define DOSELF2_NAME "runner_doself2_density" #define DOPAIR2_NAME "runner_dopair2_force" #endif #define NODE_ID 0 enum velocity_field { velocity_zero, velocity_const, velocity_divergent, velocity_rotating }; enum pressure_field { pressure_const, pressure_gradient, pressure_divergent }; void set_velocity(struct part *part, enum velocity_field vel, float size) { switch (vel) { case velocity_zero: part->v[0] = 0.f; part->v[1] = 0.f; part->v[2] = 0.f; break; case velocity_const: part->v[0] = 1.f; part->v[1] = 0.f; part->v[2] = 0.f; break; case velocity_divergent: part->v[0] = part->x[0] - 2.5 * size; part->v[1] = part->x[1] - 2.5 * size; part->v[2] = part->x[2] - 2.5 * size; break; case velocity_rotating: part->v[0] = part->x[1]; part->v[1] = -part->x[0]; part->v[2] = 0.f; break; } } float get_pressure(double x[3], enum pressure_field press, float size) { float r2 = 0.; float dx[3] = {0.f}; switch (press) { case pressure_const: return 1.5f; break; case pressure_gradient: return 1.5f * x[0]; /* gradient along x */ break; case pressure_divergent: dx[0] = x[0] - 2.5 * size; dx[1] = x[1] - 2.5 * size; dx[2] = x[2] - 2.5 * size; r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2]; return sqrt(r2) + 1.5f; break; } return 0.f; } void set_energy_state(struct part *part, enum pressure_field press, float size, float density) { const float pressure = get_pressure(part->x, press, size); #if defined(GADGET2_SPH) part->entropy = pressure / pow_gamma(density); #elif defined(HOPKINS_PE_SPH) part->entropy = pressure / pow_gamma(density); #elif defined(PHANTOM_SPH) part->u = pressure / (hydro_gamma_minus_one * density); #elif defined(MINIMAL_SPH) || defined(HOPKINS_PU_SPH) || \ defined(HOPKINS_PU_SPH_MONAGHAN) || defined(ANARCHY_PU_SPH) || \ defined(SPHENIX_SPH) || defined(PHANTOM_SPH) || defined(GASOLINE_SPH) part->u = pressure / (hydro_gamma_minus_one * density); #elif defined(PLANETARY_SPH) part->u = pressure / (hydro_gamma_minus_one * density); #elif defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH) part->conserved.energy = pressure / (hydro_gamma_minus_one * density); #else error("Need to define pressure here !"); #endif } struct solution_part { long long id; double x[3]; float v[3]; float a_hydro[3]; float h; float rho; float div_v; float S; float u; float P; float c; float h_dt; float v_sig; float S_dt; float u_dt; }; void get_solution(const struct cell *main_cell, struct solution_part *solution, float density, enum velocity_field vel, enum pressure_field press, float size) { for (int i = 0; i < main_cell->hydro.count; ++i) { solution[i].id = main_cell->hydro.parts[i].id; solution[i].x[0] = main_cell->hydro.parts[i].x[0]; solution[i].x[1] = main_cell->hydro.parts[i].x[1]; solution[i].x[2] = main_cell->hydro.parts[i].x[2]; solution[i].v[0] = main_cell->hydro.parts[i].v[0]; solution[i].v[1] = main_cell->hydro.parts[i].v[1]; solution[i].v[2] = main_cell->hydro.parts[i].v[2]; solution[i].h = main_cell->hydro.parts[i].h; solution[i].rho = density; solution[i].P = get_pressure(solution[i].x, press, size); solution[i].u = solution[i].P / (solution[i].rho * hydro_gamma_minus_one); solution[i].S = solution[i].P / pow_gamma(solution[i].rho); solution[i].c = sqrt(hydro_gamma * solution[i].P / solution[i].rho); if (vel == velocity_divergent) solution[i].div_v = 3.f; else solution[i].div_v = 0.f; solution[i].h_dt = solution[i].h * solution[i].div_v / 3.; float gradP[3] = {0.f}; if (press == pressure_gradient) { gradP[0] = 1.5f; gradP[1] = 0.f; gradP[2] = 0.f; } else if (press == pressure_divergent) { float dx[3]; dx[0] = solution[i].x[0] - 2.5 * size; dx[1] = solution[i].x[1] - 2.5 * size; dx[2] = solution[i].x[2] - 2.5 * size; float r = sqrt(dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2]); if (r > 0.) { gradP[0] = dx[0] / r; gradP[1] = dx[1] / r; gradP[2] = dx[2] / r; } } solution[i].a_hydro[0] = -gradP[0] / solution[i].rho; solution[i].a_hydro[1] = -gradP[1] / solution[i].rho; solution[i].a_hydro[2] = -gradP[2] / solution[i].rho; solution[i].v_sig = 2.f * solution[i].c; solution[i].S_dt = 0.f; solution[i].u_dt = -(solution[i].P / solution[i].rho) * solution[i].div_v; } } void reset_particles(struct cell *c, struct hydro_space *hs, enum velocity_field vel, enum pressure_field press, float size, float density) { for (int i = 0; i < c->hydro.count; ++i) { struct part *p = &c->hydro.parts[i]; set_velocity(p, vel, size); set_energy_state(p, press, size, density); #if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH) hydro_first_init_part(p, &c->hydro.xparts[i]); p->time_bin = 1; #endif hydro_init_part(p, hs); adaptive_softening_init_part(p); mhd_init_part(p); } } /** * @brief Constructs a cell and all of its particle in a valid state prior to * a SPH time-step. * * @param n The cube root of the number of particles. * @param offset The position of the cell offset from (0,0,0). * @param size The cell size. * @param h The smoothing length of the particles in units of the inter-particle * separation. * @param density The density of the fluid. * @param partId The running counter of IDs. * @param pert The perturbation to apply to the particles in the cell in units *of the inter-particle separation. * @param vel The type of velocity field. * @param press The type of pressure field. */ struct cell *make_cell(size_t n, const double offset[3], double size, double h, double density, long long *partId, double pert, enum velocity_field vel, enum pressure_field press) { const size_t count = n * n * n; const double volume = size * size * size; struct cell *cell = NULL; if (posix_memalign((void **)&cell, cell_align, sizeof(struct cell)) != 0) { error("Couldn't allocate the cell"); } bzero(cell, sizeof(struct cell)); if (posix_memalign((void **)&cell->hydro.parts, part_align, count * sizeof(struct part)) != 0) error("couldn't allocate particles, no. of particles: %d", (int)count); if (posix_memalign((void **)&cell->hydro.xparts, xpart_align, count * sizeof(struct xpart)) != 0) error("couldn't allocate particles, no. of x-particles: %d", (int)count); bzero(cell->hydro.parts, count * sizeof(struct part)); bzero(cell->hydro.xparts, count * sizeof(struct xpart)); float h_max = 0.f; /* Construct the parts */ struct part *part = cell->hydro.parts; struct xpart *xpart = cell->hydro.xparts; for (size_t x = 0; x < n; ++x) { for (size_t y = 0; y < n; ++y) { for (size_t z = 0; z < n; ++z) { part->x[0] = offset[0] + size * (x + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n; part->x[1] = offset[1] + size * (y + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n; part->x[2] = offset[2] + size * (z + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n; part->h = size * h / (float)n; h_max = fmax(h_max, part->h); part->depth_h = 0; #if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH) part->conserved.mass = density * volume / count; #else part->mass = density * volume / count; #endif set_velocity(part, vel, size); set_energy_state(part, press, size, density); hydro_first_init_part(part, xpart); part->id = ++(*partId); part->time_bin = 1; #ifdef SWIFT_DEBUG_CHECKS part->ti_drift = 8; part->ti_kick = 8; #endif ++part; ++xpart; } } } /* Cell properties */ cell->split = 0; cell->depth = 0; cell->hydro.h_max = h_max; cell->hydro.h_max_active = h_max; cell->hydro.count = count; cell->grav.count = 0; cell->hydro.dx_max_part = 0.; cell->hydro.dx_max_sort = 0.; cell->width[0] = size; cell->width[1] = size; cell->width[2] = size; cell->dmin = size; cell->loc[0] = offset[0]; cell->loc[1] = offset[1]; cell->loc[2] = offset[2]; cell->h_min_allowed = cell->dmin * 0.5 * (1. / kernel_gamma); cell->h_max_allowed = cell->dmin * (1. / kernel_gamma); cell->hydro.super = cell; cell->hydro.ti_old_part = 8; cell->hydro.ti_end_min = 8; cell->nodeID = NODE_ID; // shuffle_particles(cell->hydro.parts, cell->hydro.count); cell->hydro.sorted = 0; cell->hydro.sort = NULL; return cell; } void clean_up(struct cell *ci) { free(ci->hydro.parts); free(ci->hydro.xparts); free(ci->hydro.sort); free(ci); } /** * @brief Dump all the particles to a file */ void dump_particle_fields(char *fileName, struct cell *main_cell, struct solution_part *solution, int with_solution) { FILE *file = fopen(fileName, "w"); /* Write header */ fprintf(file, "# %4s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %8s %13s %13s " "%13s %13s %13s %8s %8s\n", "ID", "pos_x", "pos_y", "pos_z", "v_x", "v_y", "v_z", "h", "rho", "div_v", "S", "u", "P", "c", "a_x", "a_y", "a_z", "h_dt", "v_sig", "dS/dt", "du/dt"); fprintf(file, "# Main cell --------------------------------------------\n"); /* Write main cell */ for (int pid = 0; pid < main_cell->hydro.count; pid++) { fprintf(file, "%6llu %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f " "%8.5f " "%8.5f %8.5f %13e %13e %13e %13e %13e %8.5f %8.5f\n", main_cell->hydro.parts[pid].id, main_cell->hydro.parts[pid].x[0], main_cell->hydro.parts[pid].x[1], main_cell->hydro.parts[pid].x[2], main_cell->hydro.parts[pid].v[0], main_cell->hydro.parts[pid].v[1], main_cell->hydro.parts[pid].v[2], main_cell->hydro.parts[pid].h, hydro_get_comoving_density(&main_cell->hydro.parts[pid]), #if defined(MINIMAL_SPH) || defined(PLANETARY_SPH) || \ defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH) || \ defined(HOPKINS_PU_SPH) || defined(HOPKINS_PU_SPH_MONAGHAN) || \ defined(GASOLINE_SPH) 0.f, #elif defined(ANARCHY_PU_SPH) || defined(SPHENIX_SPH) || defined(PHANTOM_SPH) main_cell->hydro.parts[pid].viscosity.div_v, #else main_cell->hydro.parts[pid].density.div_v, #endif hydro_get_drifted_comoving_entropy(&main_cell->hydro.parts[pid]), hydro_get_drifted_comoving_internal_energy( &main_cell->hydro.parts[pid]), hydro_get_comoving_pressure(&main_cell->hydro.parts[pid]), hydro_get_comoving_soundspeed(&main_cell->hydro.parts[pid]), main_cell->hydro.parts[pid].a_hydro[0], main_cell->hydro.parts[pid].a_hydro[1], main_cell->hydro.parts[pid].a_hydro[2], main_cell->hydro.parts[pid].force.h_dt, #if defined(GADGET2_SPH) main_cell->hydro.parts[pid].force.v_sig, main_cell->hydro.parts[pid].entropy_dt, 0.f #elif defined(MINIMAL_SPH) || defined(HOPKINS_PU_SPH) || \ defined(HOPKINS_PU_SPH_MONAGHAN) main_cell->hydro.parts[pid].force.v_sig, 0.f, main_cell->hydro.parts[pid].u_dt #elif defined(ANARCHY_PU_SPH) || defined(SPHENIX_SPH) || \ defined(PHANTOM_SPH) || defined(GASOLINE_SPH) main_cell->hydro.parts[pid].viscosity.v_sig, 0.f, main_cell->hydro.parts[pid].u_dt #else 0.f, 0.f, 0.f #endif ); } if (with_solution) { fprintf(file, "# Solution ---------------------------------------------\n"); for (int pid = 0; pid < main_cell->hydro.count; pid++) { fprintf(file, "%6llu %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f " "%8.5f %8.5f " "%8.5f %8.5f %13f %13f %13f %13f %13f %8.5f %8.5f\n", solution[pid].id, solution[pid].x[0], solution[pid].x[1], solution[pid].x[2], solution[pid].v[0], solution[pid].v[1], solution[pid].v[2], solution[pid].h, solution[pid].rho, solution[pid].div_v, solution[pid].S, solution[pid].u, solution[pid].P, solution[pid].c, solution[pid].a_hydro[0], solution[pid].a_hydro[1], solution[pid].a_hydro[2], solution[pid].h_dt, solution[pid].v_sig, solution[pid].S_dt, solution[pid].u_dt); } } fclose(file); } /* Just a forward declaration... */ void runner_dopair1_branch_density(struct runner *r, struct cell *ci, struct cell *cj, int limit_h_min, int limit_h_max); void runner_doself1_branch_density(struct runner *r, struct cell *ci, int limit_h_min, int limit_h_max); #ifdef EXTRA_HYDRO_LOOP void runner_dopair1_branch_gradient(struct runner *r, struct cell *ci, struct cell *cj, int limit_h_min, int limit_h_max); void runner_doself1_branch_gradient(struct runner *r, struct cell *ci, int limit_h_min, int limit_h_max); #endif /* EXTRA_HYDRO LOOP */ void runner_dopair2_branch_force(struct runner *r, struct cell *ci, struct cell *cj, int limit_h_min, int limit_h_max); void runner_doself2_branch_force(struct runner *r, struct cell *ci, int limit_h_min, int limit_h_max); void runner_doself2_force_vec(struct runner *r, struct cell *ci); /* And go... */ int main(int argc, char *argv[]) { #ifdef HAVE_SETAFFINITY engine_pin(); #endif size_t runs = 0, particles = 0; double h = 1.23485, size = 1., rho = 2.5; double perturbation = 0.; char outputFileNameExtension[100] = ""; char outputFileName[200] = ""; enum velocity_field vel = velocity_zero; enum pressure_field press = pressure_const; /* Initialize CPU frequency, this also starts time. */ unsigned long long cpufreq = 0; clocks_set_cpufreq(cpufreq); /* Choke on FP-exceptions */ #ifdef HAVE_FE_ENABLE_EXCEPT feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); #endif /* Get some randomness going */ srand(0); int c; while ((c = getopt(argc, argv, "m:s:h:n:r:t:d:f:v:p:")) != -1) { switch (c) { case 'h': sscanf(optarg, "%lf", &h); break; case 's': sscanf(optarg, "%lf", &size); break; case 'n': sscanf(optarg, "%zu", &particles); break; case 'r': sscanf(optarg, "%zu", &runs); break; case 'd': sscanf(optarg, "%lf", &perturbation); break; case 'm': sscanf(optarg, "%lf", &rho); break; case 'f': strcpy(outputFileNameExtension, optarg); break; case 'v': sscanf(optarg, "%d", (int *)&vel); break; case 'p': sscanf(optarg, "%d", (int *)&press); break; case '?': error("Unknown option."); break; } } if (h < 0 || particles == 0 || runs == 0) { printf( "\nUsage: %s -n PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n" "\nGenerates 125 cells, filled with particles on a Cartesian grid." "\nThese are then interacted using runner_dopair1_density() and " "runner_doself1_density() followed by runner_dopair2_force() and " "runner_doself2_force()" "\n\nOptions:" "\n-h DISTANCE=1.2348 - Smoothing length in units of " "\n-m rho - Physical density in the cell" "\n-s size - Physical size of the cell" "\n-d pert - Perturbation to apply to the particles [0,1[" "\n-v type (0,1,2,3) - Velocity field: (zero, constant, divergent, " "rotating)" "\n-p type (0,1,2) - Pressure field: (constant, gradient divergent)" "\n-f fileName - Part of the file name used to save the dumps\n", argv[0]); exit(1); } /* Help users... */ message("DOSELF2 function called: %s", DOSELF2_NAME); message("DOPAIR2 function called: %s", DOPAIR2_NAME); message("Adiabatic index: ga = %f", hydro_gamma); message("Hydro implementation: %s", SPH_IMPLEMENTATION); message("Smoothing length: h = %f", h * size); message("Kernel: %s", kernel_name); message("Neighbour target: N = %f", pow_dimension(h) * kernel_norm); message("Density target: rho = %f", rho); message("div_v target: div = %f", vel == 2 ? 3.f : 0.f); message("curl_v target: curl = [0., 0., %f]", vel == 3 ? -2.f : 0.f); if (press == pressure_const) message("P field constant"); else if (press == pressure_gradient) message("P field gradient"); else message("P field divergent"); printf("\n"); #if !defined(HYDRO_DIMENSION_3D) message("test125cells only useful in 3D. Change parameters in const.h !"); return 1; #endif /* Build the infrastructure */ struct space space; space.periodic = 1; space.dim[0] = 5.; space.dim[1] = 5.; space.dim[2] = 5.; hydro_space_init(&space.hs, &space); struct phys_const prog_const; prog_const.const_newton_G = 1.f; prog_const.const_vacuum_permeability = 1.0; struct hydro_props hp; hydro_props_init_no_hydro(&hp); hp.eta_neighbours = h; hp.h_tolerance = 1e0; hp.h_max = FLT_MAX; hp.h_min = 0.f; hp.h_min_ratio = 0.f; hp.max_smoothing_iterations = 10; hp.CFL_condition = 0.1; struct engine engine; bzero(&engine, sizeof(struct engine)); engine.hydro_properties = &hp; engine.physical_constants = &prog_const; engine.s = &space; engine.time = 0.1f; engine.ti_current = 8; engine.max_active_bin = num_time_bins; engine.nodeID = NODE_ID; struct cosmology cosmo; cosmology_init_no_cosmo(&cosmo); engine.cosmology = &cosmo; struct sink_props sink_props; bzero(&sink_props, sizeof(struct sink_props)); engine.sink_properties = &sink_props; struct runner runner; runner.e = &engine; struct lightcone_array_props lightcone_array_properties; lightcone_array_properties.nr_lightcones = 0; engine.lightcone_array_properties = &lightcone_array_properties; struct pressure_floor_props pressure_floor; engine.pressure_floor_props = &pressure_floor; /* Construct some cells */ struct cell *cells[125]; struct cell *inner_cells[27]; struct cell *main_cell; int count = 0; static long long partId = 0; for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) { for (int k = 0; k < 5; ++k) { /* Position of the cell */ const double offset[3] = {i * size, j * size, k * size}; /* Construct it */ cells[i * 25 + j * 5 + k] = make_cell( particles, offset, size, h, rho, &partId, perturbation, vel, press); /* Store the inner cells */ if (i > 0 && i < 4 && j > 0 && j < 4 && k > 0 && k < 4) { inner_cells[count] = cells[i * 25 + j * 5 + k]; count++; } } } } /* Store the main cell for future use */ main_cell = cells[62]; /* Construct the real solution */ struct solution_part *solution = (struct solution_part *)malloc( main_cell->hydro.count * sizeof(struct solution_part)); get_solution(main_cell, solution, rho, vel, press, size); ticks timings[27]; for (int i = 0; i < 27; i++) timings[i] = 0; /* Start the test */ ticks time = 0; for (size_t n = 0; n < runs; ++n) { const ticks tic = getticks(); /* Initialise the particles */ for (int j = 0; j < 125; ++j) runner_do_drift_part(&runner, cells[j], 0); /* Reset particles. */ for (int i = 0; i < 125; ++i) { for (int pid = 0; pid < cells[i]->hydro.count; ++pid) { hydro_init_part(&cells[i]->hydro.parts[pid], &space.hs); adaptive_softening_init_part(&cells[i]->hydro.parts[pid]); mhd_init_part(&cells[i]->hydro.parts[pid]); } } /* First, sort stuff */ for (int j = 0; j < 125; ++j) runner_do_hydro_sort(&runner, cells[j], 0x1FFF, 0, 0, 0, 0); /* Do the density calculation */ /* Initialise the particle cache. */ #ifdef WITH_VECTORIZATION runner.ci_cache.count = 0; runner.cj_cache.count = 0; cache_init(&runner.ci_cache, 512); cache_init(&runner.cj_cache, 512); #endif /* Run all the (only once !)*/ for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { for (int k = 0; k < 5; k++) { struct cell *ci = cells[i * 25 + j * 5 + k]; for (int ii = -1; ii < 2; ii++) { int iii = i + ii; if (iii < 0 || iii >= 5) continue; iii = (iii + 5) % 5; for (int jj = -1; jj < 2; jj++) { int jjj = j + jj; if (jjj < 0 || jjj >= 5) continue; jjj = (jjj + 5) % 5; for (int kk = -1; kk < 2; kk++) { int kkk = k + kk; if (kkk < 0 || kkk >= 5) continue; kkk = (kkk + 5) % 5; struct cell *cj = cells[iii * 25 + jjj * 5 + kkk]; if (cj > ci) runner_dopair1_branch_density( &runner, ci, cj, /*limit_h_min=*/0, /*limit_h_max=*/0); } } } } } } /* And now the self-interaction for the central cells*/ for (int j = 0; j < 27; ++j) runner_doself1_branch_density(&runner, inner_cells[j], /*limit_h_min=*/0, /*limit_h_max=*/0); /* Ghost to finish everything on the central cells */ for (int j = 0; j < 27; ++j) runner_do_ghost(&runner, inner_cells[j], 0); #ifdef EXTRA_HYDRO_LOOP /* We need to do the gradient loop and the extra ghost! */ message( "Extra hydro loop detected, running gradient loop in test125cells."); /* Run all the pairs (only once !)*/ for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { for (int k = 0; k < 5; k++) { struct cell *ci = cells[i * 25 + j * 5 + k]; for (int ii = -1; ii < 2; ii++) { int iii = i + ii; if (iii < 0 || iii >= 5) continue; iii = (iii + 5) % 5; for (int jj = -1; jj < 2; jj++) { int jjj = j + jj; if (jjj < 0 || jjj >= 5) continue; jjj = (jjj + 5) % 5; for (int kk = -1; kk < 2; kk++) { int kkk = k + kk; if (kkk < 0 || kkk >= 5) continue; kkk = (kkk + 5) % 5; struct cell *cj = cells[iii * 25 + jjj * 5 + kkk]; if (cj > ci) runner_dopair1_branch_gradient( &runner, ci, cj, /*limit_h_min=*/0, /*limit_h_max=*/0); } } } } } } /* And now the self-interaction for the central cells */ for (int j = 0; j < 27; ++j) runner_doself1_branch_gradient(&runner, inner_cells[j], /*limit_h_min=*/0, /*limit_h_max=*/0); /* Extra ghost to finish everything on the central cells */ for (int j = 0; j < 27; ++j) runner_do_extra_ghost(&runner, inner_cells[j], 0); #endif /* EXTRA_HYDRO_LOOP */ /* Do the force calculation */ #ifdef WITH_VECTORIZATION /* Initialise the cache. */ cache_clean(&runner.ci_cache); cache_clean(&runner.cj_cache); cache_init(&runner.ci_cache, 512); cache_init(&runner.cj_cache, 512); #endif int ctr = 0; /* Do the pairs (for the central 27 cells) */ for (int i = 1; i < 4; i++) { for (int j = 1; j < 4; j++) { for (int k = 1; k < 4; k++) { struct cell *cj = cells[i * 25 + j * 5 + k]; if (main_cell != cj) { const ticks sub_tic = getticks(); runner_dopair2_branch_force(&runner, main_cell, cj, /*limit_h_min=*/0, /*limit_h_max=*/0); timings[ctr++] += getticks() - sub_tic; } } } } ticks self_tic = getticks(); /* And now the self-interaction for the main cell */ runner_doself2_branch_force(&runner, main_cell, /*limit_h_min=*/0, /*limit_h_max=*/0); timings[26] += getticks() - self_tic; /* Finally, give a gentle kick */ runner_do_end_hydro_force(&runner, main_cell, 0); const ticks toc = getticks(); time += toc - tic; /* Dump if necessary */ if (n == 0) { sprintf(outputFileName, "swift_dopair_125_%.150s.dat", outputFileNameExtension); dump_particle_fields(outputFileName, main_cell, solution, 0); } for (int i = 0; i < 125; ++i) { for (int pid = 0; pid < cells[i]->hydro.count; ++pid) { hydro_init_part(&cells[i]->hydro.parts[pid], &space.hs); adaptive_softening_init_part(&cells[i]->hydro.parts[pid]); mhd_init_part(&cells[i]->hydro.parts[pid]); } } } /* Output timing */ ticks corner_time = timings[0] + timings[2] + timings[6] + timings[8] + timings[17] + timings[19] + timings[23] + timings[25]; ticks edge_time = timings[1] + timings[3] + timings[5] + timings[7] + timings[9] + timings[11] + timings[14] + timings[16] + timings[18] + timings[20] + timings[22] + timings[24]; ticks face_time = timings[4] + timings[10] + timings[12] + timings[13] + timings[15] + timings[21]; ticks self_time = timings[26]; message("Corner calculations took: %.3f %s.", clocks_from_ticks(corner_time / runs), clocks_getunit()); message("Edge calculations took: %.3f %s.", clocks_from_ticks(edge_time / runs), clocks_getunit()); message("Face calculations took: %.3f %s.", clocks_from_ticks(face_time / runs), clocks_getunit()); message("Self calculations took: %.3f %s.", clocks_from_ticks(self_time / runs), clocks_getunit()); message("SWIFT calculation took: %.3f %s.", clocks_from_ticks(time / runs), clocks_getunit()); for (int j = 0; j < 125; ++j) reset_particles(cells[j], &space.hs, vel, press, size, rho); /* NOW BRUTE-FORCE CALCULATION */ const ticks tic = getticks(); /* Kick the central cell */ // runner_do_kick1(&runner, main_cell, 0); /* And drift it */ // runner_do_drift_particles(&runner, main_cell, 0); /* Initialise the particles */ // for (int j = 0; j < 125; ++j) runner_do_drift_particles(&runner, cells[j], // 0); /* Do the density calculation */ /* Run all the pairs (only once !)*/ for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { for (int k = 0; k < 5; k++) { struct cell *ci = cells[i * 25 + j * 5 + k]; for (int ii = -1; ii < 2; ii++) { int iii = i + ii; if (iii < 0 || iii >= 5) continue; iii = (iii + 5) % 5; for (int jj = -1; jj < 2; jj++) { int jjj = j + jj; if (jjj < 0 || jjj >= 5) continue; jjj = (jjj + 5) % 5; for (int kk = -1; kk < 2; kk++) { int kkk = k + kk; if (kkk < 0 || kkk >= 5) continue; kkk = (kkk + 5) % 5; struct cell *cj = cells[iii * 25 + jjj * 5 + kkk]; if (cj > ci) pairs_all_density(&runner, ci, cj); } } } } } } /* And now the self-interaction for the central cells*/ for (int j = 0; j < 27; ++j) self_all_density(&runner, inner_cells[j]); /* Ghost to finish everything on the central cells */ for (int j = 0; j < 27; ++j) runner_do_ghost(&runner, inner_cells[j], 0); #ifdef EXTRA_HYDRO_LOOP /* We need to do the gradient loop and the extra ghost! */ /* Run all the pairs (only once !)*/ for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { for (int k = 0; k < 5; k++) { struct cell *ci = cells[i * 25 + j * 5 + k]; for (int ii = -1; ii < 2; ii++) { int iii = i + ii; if (iii < 0 || iii >= 5) continue; iii = (iii + 5) % 5; for (int jj = -1; jj < 2; jj++) { int jjj = j + jj; if (jjj < 0 || jjj >= 5) continue; jjj = (jjj + 5) % 5; for (int kk = -1; kk < 2; kk++) { int kkk = k + kk; if (kkk < 0 || kkk >= 5) continue; kkk = (kkk + 5) % 5; struct cell *cj = cells[iii * 25 + jjj * 5 + kkk]; if (cj > ci) pairs_all_gradient(&runner, ci, cj); } } } } } } /* And now the self-interaction for the central cells */ for (int j = 0; j < 27; ++j) self_all_gradient(&runner, inner_cells[j]); /* Extra ghost to finish everything on the central cells */ for (int j = 0; j < 27; ++j) runner_do_extra_ghost(&runner, inner_cells[j], 0); #endif /* EXTRA_HYDRO_LOOP */ /* Do the force calculation */ /* Do the pairs (for the central 27 cells) */ for (int i = 1; i < 4; i++) { for (int j = 1; j < 4; j++) { for (int k = 1; k < 4; k++) { struct cell *cj = cells[i * 25 + j * 5 + k]; if (main_cell != cj) pairs_all_force(&runner, main_cell, cj); } } } /* And now the self-interaction for the main cell */ self_all_force(&runner, main_cell); /* Finally, give a gentle kick */ runner_do_end_hydro_force(&runner, main_cell, 0); // runner_do_kick2(&runner, main_cell, 0); const ticks toc = getticks(); /* Output timing */ message("Brute force calculation took : %.3f %s.", clocks_from_ticks(toc - tic), clocks_getunit()); sprintf(outputFileName, "brute_force_125_%.150s.dat", outputFileNameExtension); dump_particle_fields(outputFileName, main_cell, solution, 0); /* Clean things to make the sanitizer happy ... */ for (int i = 0; i < 125; ++i) clean_up(cells[i]); free(solution); #ifdef WITH_VECTORIZATION cache_clean(&runner.ci_cache); cache_clean(&runner.cj_cache); #endif return 0; }