/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk),
* Matthieu Schaller (schaller@strw.leidenuniv.nl)
* 2015 Peter W. Draper (p.w.draper@durham.ac.uk)
* Angus Lepper (angus.lepper@ed.ac.uk)
* 2016 John A. Regan (john.a.regan@durham.ac.uk)
* Tom Theuns (tom.theuns@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
/* Config parameters. */
#include
/* Some standard headers. */
#include
#include
#include
#include
#include
#include
#include
#include
/* MPI headers. */
#ifdef WITH_MPI
#include
#endif
/* Local headers. */
#include "argparse.h"
#include "swift.h"
/* Engine policy flags. */
#ifndef ENGINE_POLICY
#define ENGINE_POLICY engine_policy_none
#endif
/* Global profiler. */
struct profiler prof;
/* Usage string. */
static const char *const swift_usage[] = {
"swift [options] [[--] param-file]",
"swift [options] param-file",
"swift_mpi [options] [[--] param-file]",
"swift_mpi [options] param-file",
NULL,
};
/* Function to handle multiple -P arguments. */
struct cmdparams {
const char *param[PARSER_MAX_NO_OF_PARAMS];
int nparam;
};
static int handle_cmdparam(struct argparse *self,
const struct argparse_option *opt) {
struct cmdparams *cmdps = (struct cmdparams *)opt->data;
cmdps->param[cmdps->nparam] = *(char **)opt->value;
cmdps->nparam++;
return 1;
}
/**
* @brief Main routine that loads a few particles and generates some output.
*
*/
int main(int argc, char *argv[]) {
struct clocks_time tic, toc;
struct engine e;
/* Structs used by the engine. Declare now to make sure these are always in
* scope. */
struct chemistry_global_data chemistry;
struct cooling_function_data cooling_func;
struct cosmology cosmo;
struct external_potential potential;
struct forcing_terms forcing_terms;
struct extra_io_properties extra_io_props;
struct star_formation starform;
struct pm_mesh mesh;
struct power_spectrum_data pow_data;
struct gpart *gparts = NULL;
struct gravity_props gravity_properties;
struct hydro_props hydro_properties;
struct stars_props stars_properties;
struct sink_props sink_properties;
struct neutrino_props neutrino_properties;
struct neutrino_response neutrino_response;
struct feedback_props feedback_properties;
struct rt_props rt_properties;
struct entropy_floor_properties entropy_floor;
struct pressure_floor_props pressure_floor_props;
struct black_holes_props black_holes_properties;
struct fof_props fof_properties;
struct lightcone_array_props lightcone_array_properties;
struct part *parts = NULL;
struct phys_const prog_const;
struct space s;
struct spart *sparts = NULL;
struct bpart *bparts = NULL;
struct sink *sinks = NULL;
struct unit_system us;
struct los_props los_properties;
struct ic_info ics_metadata;
int nr_nodes = 1, myrank = 0;
#ifdef WITH_MPI
/* Start by initializing MPI. */
int res = 0, prov = 0;
if ((res = MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &prov)) !=
MPI_SUCCESS)
error("Call to MPI_Init failed with error %i.", res);
if (prov != MPI_THREAD_MULTIPLE)
error(
"MPI does not provide the level of threading"
" required (MPI_THREAD_MULTIPLE).");
if ((res = MPI_Comm_size(MPI_COMM_WORLD, &nr_nodes)) != MPI_SUCCESS)
error("MPI_Comm_size failed with error %i.", res);
if ((res = MPI_Comm_rank(MPI_COMM_WORLD, &myrank)) != MPI_SUCCESS)
error("Call to MPI_Comm_rank failed with error %i.", res);
/* Make sure messages are stamped with the correct rank and step. */
engine_rank = myrank;
engine_current_step = 0;
if ((res = MPI_Comm_set_errhandler(MPI_COMM_WORLD, MPI_ERRORS_RETURN)) !=
MPI_SUCCESS)
error("Call to MPI_Comm_set_errhandler failed with error %i.", res);
if (myrank == 0)
pretime_message("MPI is up and running with %i node(s).\n", nr_nodes);
if (nr_nodes == 1) {
pretime_message("WARNING: you are running with one MPI rank.");
pretime_message(
"WARNING: you should use the non-MPI version of this program.");
}
#endif
/* Welcome to SWIFT, you made the right choice */
if (myrank == 0) greetings(/*fof=*/0);
#ifdef WITH_MPI
/* Sync all output messages starting now to avoid verbose output
* interleaving with greeting. */
fflush(stdout);
MPI_Barrier(MPI_COMM_WORLD);
#endif
int with_aff = 0;
int with_nointerleave = 0;
int with_interleave = 0; /* Deprecated. */
int dry_run = 0;
int dump_tasks = 0;
int dump_cells = 0;
int dump_threadpool = 0;
int nsteps = -2;
int restart = 0;
int with_cosmology = 0;
int with_external_gravity = 0;
int with_temperature = 0;
int with_cooling = 0;
int with_self_gravity = 0;
int with_hydro = 0;
#ifdef MOVING_MESH
int with_grid_hydro = 0;
int with_grid = 0;
#endif
int with_stars = 0;
int with_fof = 0;
int with_lightcone = 0;
int with_star_formation = 0;
int with_feedback = 0;
int with_black_holes = 0;
int with_timestep_limiter = 0;
int with_timestep_sync = 0;
int with_fp_exceptions = 0;
int with_drift_all = 0;
int with_mpole_reconstruction = 0;
int with_structure_finding = 0;
int with_csds = 0;
int with_sinks = 0;
int with_qla = 0;
int with_eagle = 0;
int with_gear = 0;
int with_agora = 0;
int with_line_of_sight = 0;
int with_rt = 0;
int with_power = 0;
int verbose = 0;
int nr_threads = 1;
int nr_pool_threads = -1;
int with_verbose_timers = 0;
char *output_parameters_filename = NULL;
char *cpufreqarg = NULL;
char *param_filename = NULL;
char restart_file[200] = "";
unsigned long long cpufreq = 0;
float dump_tasks_threshold = 0.f;
struct cmdparams cmdps;
cmdps.nparam = 0;
cmdps.param[0] = NULL;
char *buffer = NULL;
/* Parse the command-line parameters. */
struct argparse_option options[] = {
OPT_HELP(),
OPT_GROUP(" Simulation options:\n"),
OPT_BOOLEAN('b', "feedback", &with_feedback, "Run with stars feedback.",
NULL, 0, 0),
OPT_BOOLEAN('c', "cosmology", &with_cosmology,
"Run with cosmological time integration.", NULL, 0, 0),
OPT_BOOLEAN(0, "temperature", &with_temperature,
"Run with temperature calculation.", NULL, 0, 0),
OPT_BOOLEAN('C', "cooling", &with_cooling,
"Run with cooling (also switches on --temperature).", NULL, 0,
0),
OPT_BOOLEAN('D', "drift-all", &with_drift_all,
"Always drift all particles even the ones far from active "
"particles. This emulates Gadget-[23] and GIZMO's default "
"behaviours.",
NULL, 0, 0),
OPT_BOOLEAN('F', "star-formation", &with_star_formation,
"Run with star formation.", NULL, 0, 0),
OPT_BOOLEAN('g', "external-gravity", &with_external_gravity,
"Run with an external gravitational potential.", NULL, 0, 0),
OPT_BOOLEAN('G', "self-gravity", &with_self_gravity,
"Run with self-gravity.", NULL, 0, 0),
OPT_BOOLEAN('M', "multipole-reconstruction", &with_mpole_reconstruction,
"Reconstruct the multipoles every time-step.", NULL, 0, 0),
OPT_BOOLEAN('s', "hydro", &with_hydro, "Run with hydrodynamics.", NULL, 0,
0),
OPT_BOOLEAN('S', "stars", &with_stars, "Run with stars.", NULL, 0, 0),
OPT_BOOLEAN('B', "black-holes", &with_black_holes,
"Run with black holes.", NULL, 0, 0),
OPT_BOOLEAN('k', "sinks", &with_sinks, "Run with sink particles.", NULL,
0, 0),
OPT_BOOLEAN(
'u', "fof", &with_fof,
"Run Friends-of-Friends algorithm to perform black hole seeding.",
NULL, 0, 0),
OPT_BOOLEAN(0, "lightcone", &with_lightcone,
"Generate lightcone outputs.", NULL, 0, 0),
OPT_BOOLEAN('x', "velociraptor", &with_structure_finding,
"Run with structure finding.", NULL, 0, 0),
OPT_BOOLEAN(0, "line-of-sight", &with_line_of_sight,
"Run with line-of-sight outputs.", NULL, 0, 0),
OPT_BOOLEAN(0, "limiter", &with_timestep_limiter,
"Run with time-step limiter.", NULL, 0, 0),
OPT_BOOLEAN(0, "sync", &with_timestep_sync,
"Run with time-step synchronization of particles hit by "
"feedback events.",
NULL, 0, 0),
OPT_BOOLEAN(0, "csds", &with_csds,
"Run with the Continuous Simulation Data Stream (CSDS).",
NULL, 0, 0),
OPT_BOOLEAN('R', "radiation", &with_rt, "Run with radiative transfer.",
NULL, 0, 0),
OPT_BOOLEAN(0, "power", &with_power, "Run with power spectrum outputs.",
NULL, 0, 0),
OPT_GROUP(" Simulation meta-options:\n"),
OPT_BOOLEAN(0, "quick-lyman-alpha", &with_qla,
"Run with all the options needed for the quick Lyman-alpha "
"model. This is equivalent to --hydro --self-gravity --stars "
"--star-formation --cooling.",
NULL, 0, 0),
OPT_BOOLEAN(
0, "eagle", &with_eagle,
"Run with all the options needed for the EAGLE model. This is "
"equivalent to --hydro --limiter --sync --self-gravity --stars "
"--star-formation --cooling --feedback --black-holes --fof.",
NULL, 0, 0),
OPT_BOOLEAN(
0, "gear", &with_gear,
"Run with all the options needed for the GEAR model. This is "
"equivalent to --hydro --limiter --sync --self-gravity --stars "
"--star-formation --cooling --feedback.",
NULL, 0, 0),
OPT_BOOLEAN(
0, "agora", &with_agora,
"Run with all the options needed for the AGORA model. This is "
"equivalent to --hydro --limiter --sync --self-gravity --stars "
"--star-formation --cooling --feedback.",
NULL, 0, 0),
OPT_GROUP(" Control options:\n"),
OPT_BOOLEAN('a', "pin", &with_aff,
"Pin runners using processor affinity.", NULL, 0, 0),
OPT_BOOLEAN(0, "nointerleave", &with_nointerleave,
"Do not interleave memory allocations across NUMA regions.",
NULL, 0, 0),
OPT_BOOLEAN(0, "interleave", &with_interleave,
"Deprecated option, now default", NULL, 0, 0),
OPT_BOOLEAN('d', "dry-run", &dry_run,
"Dry run. Read the parameter file, allocates memory but does "
"not read the particles from ICs. Exits before the start of "
"time integration. Checks the validity of parameters and IC "
"files as well as memory limits.",
NULL, 0, 0),
OPT_BOOLEAN('e', "fpe", &with_fp_exceptions,
"Enable floating-point exceptions (debugging mode).", NULL, 0,
0),
OPT_STRING('f', "cpu-frequency", &cpufreqarg,
"Overwrite the CPU "
"frequency (Hz) to be used for time measurements.",
NULL, 0, 0),
OPT_INTEGER('n', "steps", &nsteps,
"Execute a fixed number of time steps. When unset use the "
"time_end parameter to stop.",
NULL, 0, 0),
OPT_STRING('o', "output-params", &output_parameters_filename,
"Generate a parameter file with the options for selecting the "
"output fields.",
NULL, 0, 0),
OPT_STRING('P', "param", &buffer,
"Set parameter value, overiding the value read from the "
"parameter file. Can be used more than once {sec:par:value}.",
handle_cmdparam, (intptr_t)&cmdps, 0),
OPT_BOOLEAN('r', "restart", &restart, "Continue using restart files.",
NULL, 0, 0),
OPT_INTEGER(
't', "threads", &nr_threads,
"The number of task threads to use on each MPI rank. Defaults to "
"1 if not specified.",
NULL, 0, 0),
OPT_INTEGER(0, "pool-threads", &nr_pool_threads,
"The number of threads to use on each MPI rank for the "
"threadpool operations. "
"Defaults to the numbers of task threads if not specified.",
NULL, 0, 0),
OPT_INTEGER('T', "timers", &with_verbose_timers,
"Print timers every time-step.", NULL, 0, 0),
OPT_INTEGER('v', "verbose", &verbose,
"Run in verbose mode, in MPI mode 2 outputs from all ranks.",
NULL, 0, 0),
OPT_INTEGER('y', "task-dumps", &dump_tasks,
"Time-step frequency at which task graphs are dumped.", NULL,
0, 0),
OPT_INTEGER(0, "cell-dumps", &dump_cells,
"Time-step frequency at which cell graphs are dumped.", NULL,
0, 0),
OPT_INTEGER('Y', "threadpool-dumps", &dump_threadpool,
"Time-step frequency at which threadpool tasks are dumped.",
NULL, 0, 0),
OPT_FLOAT(0, "dump-tasks-threshold", &dump_tasks_threshold,
"Fraction of the total step's time spent in a task to trigger "
"a dump of the task plot on this step",
NULL, 0, 0),
OPT_END(),
};
struct argparse argparse;
argparse_init(&argparse, options, swift_usage, 0);
argparse_describe(&argparse, "\nParameters:",
"\nSee the file examples/parameter_example.yml for an "
"example of parameter file.");
int nargs = argparse_parse(&argparse, argc, (const char **)argv);
/* Deal with meta options */
if (with_qla) {
with_hydro = 1;
with_self_gravity = 1;
with_stars = 1;
with_star_formation = 1;
with_cooling = 1;
}
if (with_eagle) {
with_hydro = 1;
with_timestep_limiter = 1;
with_timestep_sync = 1;
with_self_gravity = 1;
with_stars = 1;
with_star_formation = 1;
with_cooling = 1;
with_feedback = 1;
with_black_holes = 1;
with_fof = 1;
}
if (with_gear) {
with_hydro = 1;
with_timestep_limiter = 1;
with_timestep_sync = 1;
with_self_gravity = 1;
with_stars = 1;
with_star_formation = 1;
with_cooling = 1;
with_feedback = 1;
}
if (with_agora) {
with_hydro = 1;
with_timestep_limiter = 1;
with_timestep_sync = 1;
with_self_gravity = 1;
with_stars = 1;
with_star_formation = 1;
with_cooling = 1;
with_feedback = 1;
}
#ifdef MOVING_MESH
if (with_hydro) {
with_grid = 1;
}
#endif
/* Deal with thread numbers */
if (nr_threads <= 0)
error("Invalid number of threads provided (%d), must be > 0.", nr_threads);
if (nr_pool_threads == -1) nr_pool_threads = nr_threads;
/* Write output parameter file */
if (myrank == 0 && output_parameters_filename != NULL) {
io_write_output_field_parameter(output_parameters_filename, with_cosmology,
with_fof, with_structure_finding);
pretime_message("End of run.");
return 0;
}
/* Need a parameter file. */
if (nargs != 1) {
if (myrank == 0) argparse_usage(&argparse);
pretime_message("\nError: no parameter file was supplied.");
return 1;
}
param_filename = argv[0];
/* Checks of options. */
#if !defined(HAVE_SETAFFINITY) || !defined(HAVE_LIBNUMA)
if (with_aff) {
pretime_message("Error: no NUMA support for thread affinity.");
return 1;
}
#endif
/* Interleave option is not fatal since we want to use it by default. */
if (with_interleave)
pretime_message(
"WARNING: the --interleave option is deprecated and ignored.");
#if !defined(HAVE_LIBNUMA)
if (!with_nointerleave || with_interleave) {
if (verbose)
pretime_message("WARNING: no NUMA support for interleaving memory.\n");
}
#endif
#if !defined(WITH_CSDS)
if (with_csds) {
pretime_message(
"Error: the CSDS is not available, please compile with "
"--enable-csds.");
return 1;
}
#endif
#ifndef HAVE_FE_ENABLE_EXCEPT
if (with_fp_exceptions) {
pretime_message("Error: no support for floating point exceptions.");
return 1;
}
#endif
#ifndef HAVE_VELOCIRAPTOR
if (with_structure_finding) {
pretime_message("Error: VELOCIraptor is not available.");
return 1;
}
#endif
#ifndef SWIFT_DEBUG_TASKS
if (dump_tasks) {
if (myrank == 0) {
pretime_message(
"WARNING: complete task dumps are only created when "
"configured with --enable-task-debugging.");
pretime_message(" Basic task statistics will be output.");
}
}
#endif
if (dump_tasks_threshold > 0.f) {
#ifndef SWIFT_DEBUG_TASKS
if (myrank == 0) {
error(
"Error: Dumping task plot data above a fixed time threshold is only "
"valid when the code is configured with --enable-task-debugging.");
}
#endif
#ifdef WITH_MPI
if (nr_nodes > 1)
error("Cannot dump tasks above a time threshold over MPI (yet).");
#endif
}
#ifndef SWIFT_CELL_GRAPH
if (dump_cells) {
if (myrank == 0) {
error(
"complete cell dumps are only created when "
"configured with --enable-cell-graph.");
}
}
#endif
#ifndef SWIFT_DEBUG_THREADPOOL
if (dump_threadpool) {
pretime_message(
"Error: threadpool dumping is only possible if SWIFT was "
"configured with the --enable-threadpool-debugging option.");
return 1;
}
#endif
#ifdef WITH_MPI
#ifdef SWIFT_DEBUG_CHECKS
if (with_sinks) {
pretime_message("Warning: sink particles are are WIP yet with MPI.");
}
#else
if (with_sinks) {
pretime_message("Error: sink particles are not available yet with MPI.");
return 1;
}
#endif /* SWIFT_DEBUG_CHECKS */
#endif /* WITH_MPI */
if (with_sinks && with_star_formation) {
pretime_message(
"Error: The sink particles are not supposed to be run with star "
"formation.");
return 1;
}
/* The CPU frequency is a long long, so we need to parse that ourselves. */
if (cpufreqarg != NULL) {
if (sscanf(cpufreqarg, "%llu", &cpufreq) != 1) {
if (myrank == 0)
pretime_message("Error parsing CPU frequency (%s).", cpufreqarg);
return 1;
}
}
if (!with_self_gravity && !with_hydro && !with_external_gravity) {
if (myrank == 0) {
argparse_usage(&argparse);
pretime_message(
"\nError: At least one of --hydro, --external-gravity"
" or --self-gravity must be chosen.");
}
return 1;
}
if (with_stars && !with_external_gravity && !with_self_gravity) {
if (myrank == 0) {
argparse_usage(&argparse);
pretime_message(
"\nError: Cannot process stars without gravity, --external-gravity "
"or --self-gravity must be chosen.");
}
return 1;
}
if (with_black_holes && !with_self_gravity) {
if (myrank == 0) {
argparse_usage(&argparse);
pretime_message(
"Error: Cannot process black holes without self-gravity, "
"--self-gravity must be chosen.\n");
}
return 1;
}
if (with_fof) {
#ifndef WITH_FOF
error("Running with FOF but compiled without it!");
#endif
}
if (with_fof && !with_self_gravity) {
if (myrank == 0)
pretime_message(
"Error: Cannot perform FOF search without gravity,"
" --external-gravity or --self-gravity must be chosen.");
return 1;
}
if (with_lightcone) {
#ifndef WITH_LIGHTCONE
error("Running with lightcone output but compiled without it!");
#endif
if (!with_cosmology)
error("Error: cannot make lightcones without --cosmology.");
}
if (!with_stars && with_star_formation) {
if (myrank == 0) {
argparse_usage(&argparse);
pretime_message(
"Error: Cannot process star formation without stars, --stars must "
"be chosen.");
}
return 1;
}
if (!with_stars && with_feedback) {
if (myrank == 0) {
argparse_usage(&argparse);
pretime_message(
"Error: Cannot process feedback without stars, --stars must be "
"chosen.");
}
return 1;
}
if (!with_hydro && with_feedback) {
if (myrank == 0) {
argparse_usage(&argparse);
pretime_message(
"Error: Cannot process feedback without gas, --hydro must be "
"chosen.");
}
return 1;
}
if (!with_hydro && with_black_holes) {
if (myrank == 0) {
argparse_usage(&argparse);
pretime_message(
"Error: Cannot process black holes without gas, --hydro must be "
"chosen.");
}
return 1;
}
if (!with_hydro && with_line_of_sight) {
if (myrank == 0) {
argparse_usage(&argparse);
pretime_message(
"Error: Cannot use line-of-sight outputs without gas, --hydro must "
"be chosen.");
}
return 1;
}
#ifdef RT_NONE
if (with_rt) {
error("Running with radiative transfer but compiled without it!");
}
#else
if (!with_rt) {
error("Running without radiative transfer but compiled with it!");
}
if (with_rt && !with_hydro) {
error(
"Error: Cannot use radiative transfer without gas, --hydro must be "
"chosen.");
}
if (with_rt && !with_stars) {
/* In principle we can run without stars, but I don't trust the user to
* remember to add the flag every time they want to run RT. */
error(
"Error: Cannot use radiative transfer without stars, --stars must be "
"chosen.");
}
if (with_rt && !with_feedback) {
error(
"Error: Cannot use radiative transfer without --feedback "
"(even if configured --with-feedback=none).");
}
if (with_rt && with_cooling) {
error("Error: Cannot use radiative transfer and cooling simultaneously.");
}
#endif /* idfef RT_NONE */
#ifdef SINK_NONE
if (with_sinks) {
error("Running with sink particles but compiled without them!");
}
#endif
#ifdef TRACERS_EAGLE
if (!with_cooling && !with_temperature)
error(
"Error: Cannot use EAGLE tracers without --cooling or --temperature.");
#endif
/* Let's pin the main thread, now we know if affinity will be used. */
#if defined(HAVE_SETAFFINITY) && defined(HAVE_LIBNUMA) && defined(_GNU_SOURCE)
if (with_aff &&
((ENGINE_POLICY)&engine_policy_setaffinity) == engine_policy_setaffinity)
engine_pin();
#endif
#if defined(HAVE_LIBNUMA) && defined(_GNU_SOURCE)
/* Set the NUMA memory policy to interleave. */
if (!with_nointerleave) engine_numa_policies(myrank, verbose);
#endif
/* Genesis 1.1: And then, there was time ! */
clocks_set_cpufreq(cpufreq);
/* Are we running with gravity */
const int with_gravity = (with_self_gravity || with_external_gravity);
/* How vocal are we ? */
const int talking = (verbose == 1 && myrank == 0) || (verbose == 2);
if (myrank == 0 && dry_run)
message(
"Executing a dry run. No i/o or time integration will be performed.");
/* Report CPU frequency.*/
cpufreq = clocks_get_cpufreq();
if (myrank == 0) {
message("CPU frequency used for tick conversion: %llu Hz", cpufreq);
}
/* Report host name(s). */
#ifdef WITH_MPI
if (talking) {
message("Rank %d running on: %s", myrank, hostname());
}
#else
message("Running on: %s", hostname());
#endif
/* Do we have debugging checks ? */
#ifdef SWIFT_DEBUG_CHECKS
if (myrank == 0)
message("WARNING: Debugging checks activated. Code will be slower !");
#endif
/* Do we have debugging checks ? */
#ifdef SWIFT_USE_NAIVE_INTERACTIONS
if (myrank == 0)
message(
"WARNING: Naive cell interactions activated. Code will be slower !");
#endif
/* Do we have gravity accuracy checks ? */
#ifdef SWIFT_GRAVITY_FORCE_CHECKS
if (myrank == 0)
message(
"WARNING: Checking 1/%d of all gpart for gravity accuracy. Code will "
"be slower !",
SWIFT_GRAVITY_FORCE_CHECKS);
#endif
/* Do we have hydro accuracy checks ? */
#ifdef SWIFT_HYDRO_DENSITY_CHECKS
if (myrank == 0)
message(
"WARNING: Checking 1/%d of all part for hydro accuracy. Code will be "
"slower !",
SWIFT_HYDRO_DENSITY_CHECKS);
#endif
/* Do we choke on FP-exceptions ? */
if (with_fp_exceptions) {
#ifdef HAVE_FE_ENABLE_EXCEPT
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
if (myrank == 0)
message("WARNING: Floating point exceptions will be reported.");
}
/* Do we have slow barriers? */
#ifndef HAVE_PTHREAD_BARRIERS
if (myrank == 0)
message("WARNING: Non-optimal thread barriers are being used.");
#endif
/* How large are the parts? */
if (myrank == 0) {
message("sizeof(part) is %4zi bytes.", sizeof(struct part));
message("sizeof(xpart) is %4zi bytes.", sizeof(struct xpart));
message("sizeof(sink) is %4zi bytes.", sizeof(struct sink));
message("sizeof(spart) is %4zi bytes.", sizeof(struct spart));
message("sizeof(bpart) is %4zi bytes.", sizeof(struct bpart));
message("sizeof(gpart) is %4zi bytes.", sizeof(struct gpart));
message("sizeof(multipole) is %4zi bytes.", sizeof(struct multipole));
message("sizeof(grav_tensor) is %4zi bytes.", sizeof(struct grav_tensor));
message("sizeof(task) is %4zi bytes.", sizeof(struct task));
message("sizeof(cell) is %4zi bytes.", sizeof(struct cell));
}
/* Read the parameter file */
struct swift_params *params =
(struct swift_params *)malloc(sizeof(struct swift_params));
/* In scope reference for a potential copy when restarting. */
struct swift_params *refparams = NULL;
if (params == NULL) error("Error allocating memory for the parameter file.");
if (myrank == 0) {
message("Reading runtime parameters from file '%s'", param_filename);
parser_read_file(param_filename, params);
/* Handle any command-line overrides. */
if (cmdps.nparam > 0) {
message(
"Overwriting values read from the YAML file with command-line "
"values.");
for (int k = 0; k < cmdps.nparam; k++)
parser_set_param(params, cmdps.param[k]);
}
}
#ifdef WITH_MPI
/* Broadcast the parameter file */
MPI_Bcast(params, sizeof(struct swift_params), MPI_BYTE, 0, MPI_COMM_WORLD);
#endif
/* Read the provided output selection file, if available. Best to
* do this after broadcasting the parameters as there may be code in this
* function that is repeated on each node based on the parameter file. */
struct output_options *output_options =
(struct output_options *)malloc(sizeof(struct output_options));
output_options_init(params, myrank, output_options);
/* Temporary early aborts for modes not supported over MPI. */
#ifdef WITH_MPI
if (with_mpole_reconstruction && nr_nodes > 1)
error("Cannot reconstruct m-poles every step over MPI (yet).");
#endif
/* Temporary early aborts for modes not supported with hand-vec. */
#if defined(WITH_VECTORIZATION) && defined(GADGET2_SPH) && \
!defined(CHEMISTRY_NONE)
error(
"Cannot run with chemistry and hand-vectorization (yet). "
"Use --disable-hand-vec at configure time.");
#endif
/* Check that we can write the snapshots by testing if the output
* directory exists and is searchable and writable. */
char basename[PARSER_MAX_LINE_SIZE];
parser_get_param_string(params, "Snapshots:basename", basename);
const char *dirp = dirname(basename);
if (access(dirp, W_OK | X_OK) != 0) {
error("Cannot write snapshots in directory %s (%s)", dirp, strerror(errno));
}
/* Check that we can write the structure finding catalogues by testing if the
* output directory exists and is searchable and writable. */
if (with_structure_finding) {
char stfbasename[PARSER_MAX_LINE_SIZE];
parser_get_param_string(params, "StructureFinding:basename", stfbasename);
const char *stfdirp = dirname(stfbasename);
if (access(stfdirp, W_OK | X_OK) != 0) {
error("Cannot write stf catalogues in directory %s (%s)", stfdirp,
strerror(errno));
}
}
/* Check that we can write the line of sight files by testing if the
* output directory exists and is searchable and writable. */
if (with_line_of_sight) {
char losbasename[PARSER_MAX_LINE_SIZE];
parser_get_param_string(params, "LineOfSight:basename", losbasename);
const char *losdirp = dirname(losbasename);
if (access(losdirp, W_OK | X_OK) != 0) {
error("Cannot write line of sight in directory %s (%s)", losdirp,
strerror(errno));
}
}
/* Prepare the domain decomposition scheme */
struct repartition reparttype;
#ifdef WITH_MPI
struct partition initial_partition;
partition_init(&initial_partition, &reparttype, params, nr_nodes);
/* Let's report what we did */
if (myrank == 0) {
#if defined(HAVE_PARMETIS)
if (reparttype.usemetis)
message("Using METIS serial partitioning:");
else
message("Using ParMETIS partitioning:");
#elif defined(HAVE_METIS)
message("Using METIS serial partitioning:");
#else
message("Non-METIS partitioning:");
#endif
message(" initial partitioning: %s",
initial_partition_name[initial_partition.type]);
if (initial_partition.type == INITPART_GRID)
message(" grid set to [ %i %i %i ].", initial_partition.grid[0],
initial_partition.grid[1], initial_partition.grid[2]);
message(" repartitioning: %s", repartition_name[reparttype.type]);
}
#endif
/* Common variables for restart and IC sections. */
int clean_smoothing_length_values = 0;
int flag_entropy_ICs = 0;
/* Work out where we will read and write restart files. */
char restart_dir[PARSER_MAX_LINE_SIZE];
parser_get_opt_param_string(params, "Restarts:subdir", restart_dir,
"restart");
/* The directory must exist. */
if (myrank == 0) {
if (access(restart_dir, W_OK | X_OK) != 0) {
if (restart) {
error("Cannot restart as no restart subdirectory: %s (%s)", restart_dir,
strerror(errno));
} else {
if (mkdir(restart_dir, 0777) != 0)
error("Failed to create restart directory: %s (%s)", restart_dir,
strerror(errno));
}
}
}
/* Basename for any restart files. */
char restart_name[PARSER_MAX_LINE_SIZE];
parser_get_opt_param_string(params, "Restarts:basename", restart_name,
"swift");
/* If restarting, look for the restart files. */
if (restart) {
/* Attempting a restart. */
char **restart_files = NULL;
int restart_nfiles = 0;
if (myrank == 0) {
message("Restarting SWIFT");
/* Locate the restart files. */
restart_files =
restart_locate(restart_dir, restart_name, &restart_nfiles);
if (restart_nfiles == 0)
error("Failed to locate any restart files in %s", restart_dir);
/* We need one file per rank. */
if (restart_nfiles != nr_nodes)
error("Incorrect number of restart files, expected %d found %d",
nr_nodes, restart_nfiles);
if (verbose > 0)
for (int i = 0; i < restart_nfiles; i++)
message("found restart file: %s", restart_files[i]);
}
#ifdef WITH_MPI
/* Distribute the restart files, need one for each rank. */
if (myrank == 0) {
for (int i = 1; i < nr_nodes; i++) {
strcpy(restart_file, restart_files[i]);
MPI_Send(restart_file, 200, MPI_BYTE, i, 0, MPI_COMM_WORLD);
}
/* Keep local file. */
strcpy(restart_file, restart_files[0]);
/* Finished with the list. */
restart_locate_free(restart_nfiles, restart_files);
} else {
MPI_Recv(restart_file, 200, MPI_BYTE, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
}
if (verbose > 1) message("local restart file = %s", restart_file);
#else
/* Just one restart file. */
strcpy(restart_file, restart_files[0]);
/* Finished with the list. */
restart_locate_free(1, restart_files);
#endif
/* Now read it. */
restart_read(&e, restart_file);
#ifdef WITH_MPI
integertime_t min_ti_current = e.ti_current;
integertime_t max_ti_current = e.ti_current;
/* Verify that everyone agrees on the current time */
MPI_Allreduce(&e.ti_current, &min_ti_current, 1, MPI_LONG_LONG_INT, MPI_MIN,
MPI_COMM_WORLD);
MPI_Allreduce(&e.ti_current, &max_ti_current, 1, MPI_LONG_LONG_INT, MPI_MAX,
MPI_COMM_WORLD);
if (min_ti_current != max_ti_current) {
if (myrank == 0)
message("The restart files don't all contain the same ti_current!");
for (int i = 0; i < myrank; ++i) {
if (myrank == i)
message("MPI rank %d reading file '%s' found an integer time= %lld",
myrank, restart_file, e.ti_current);
MPI_Barrier(MPI_COMM_WORLD);
}
if (myrank == 0) error("Aborting");
}
#endif
/* Keep a copy of the params from the restart. */
refparams = (struct swift_params *)malloc(sizeof(struct swift_params));
memcpy(refparams, e.parameter_file, sizeof(struct swift_params));
/* And initialize the engine with the space and policies. */
engine_config(/*restart=*/1, /*fof=*/0, &e, params, nr_nodes, myrank,
nr_threads, nr_pool_threads, with_aff, talking, restart_dir,
restart_file, &reparttype);
/* Check if we are already done when given steps on the command-line. */
if (e.step >= nsteps && nsteps > 0)
error("Not restarting, already completed %d steps", e.step);
/* If we are restarting at the very end of a run, just build the tree and
* prepare to dump.
* The main simulation loop below (where rebuild normally happens) won't be
* executed. */
if (engine_is_done(&e)) space_rebuild(e.s, /*repartitioned=*/0, e.verbose);
} else {
/* Prepare and verify the selection of outputs */
io_prepare_output_fields(output_options, with_cosmology, with_fof,
with_structure_finding, e.verbose);
#if defined(SWIFT_DEBUG_TASKS)
task_create_name_files("task_labels");
#endif
/* Not restarting so look for the ICs. */
/* Initialize unit system and constants */
units_init_from_params(&us, params, "InternalUnitSystem");
phys_const_init(&us, params, &prog_const);
if (myrank == 0) {
message("Internal unit system: U_M = %e g.", us.UnitMass_in_cgs);
message("Internal unit system: U_L = %e cm.", us.UnitLength_in_cgs);
message("Internal unit system: U_t = %e s.", us.UnitTime_in_cgs);
message("Internal unit system: U_I = %e A.", us.UnitCurrent_in_cgs);
message("Internal unit system: U_T = %e K.", us.UnitTemperature_in_cgs);
phys_const_print(&prog_const);
}
/* Read particles and space information from ICs */
char ICfileName[200] = "";
parser_get_param_string(params, "InitialConditions:file_name", ICfileName);
const int periodic =
parser_get_param_int(params, "InitialConditions:periodic");
const int replicate =
parser_get_opt_param_int(params, "InitialConditions:replicate", 1);
clean_smoothing_length_values = parser_get_opt_param_int(
params, "InitialConditions:cleanup_smoothing_lengths", 0);
const int cleanup_h = parser_get_opt_param_int(
params, "InitialConditions:cleanup_h_factors", 0);
const int cleanup_sqrt_a = parser_get_opt_param_int(
params, "InitialConditions:cleanup_velocity_factors", 0);
const int generate_gas_in_ics = parser_get_opt_param_int(
params, "InitialConditions:generate_gas_in_ics", 0);
const int remap_ids =
parser_get_opt_param_int(params, "InitialConditions:remap_ids", 0);
/* Initialise the cosmology */
if (with_cosmology)
cosmology_init(params, &us, &prog_const, &cosmo);
else
cosmology_init_no_cosmo(&cosmo);
if (myrank == 0 && with_cosmology) cosmology_print(&cosmo);
if (with_hydro) {
#ifdef NONE_SPH
error("Can't run with hydro when compiled without a hydro model!");
#endif
#ifdef MOVING_MESH
warning(
"Moving mesh hydrodynamics is in the process of being merged and "
"will not perform as expected right now!");
#endif
}
if (with_stars) {
#ifdef STARS_NONE
error("Can't run with stars when compiled without a stellar model!");
#endif
}
if (with_black_holes) {
#ifdef BLACK_HOLES_NONE
error(
"Can't run with black holes when compiled without a black hole "
"model!");
#endif
}
/* Initialise the hydro properties */
if (with_hydro)
hydro_props_init(&hydro_properties, &prog_const, &us, params);
else
bzero(&hydro_properties, sizeof(struct hydro_props));
/* Initialise the equation of state */
if (with_hydro)
eos_init(&eos, &prog_const, &us, params);
else
bzero(&eos, sizeof(struct eos_parameters));
/* Initialise the entropy floor */
if (with_hydro)
entropy_floor_init(&entropy_floor, &prog_const, &us, &hydro_properties,
params);
else
bzero(&entropy_floor, sizeof(struct entropy_floor_properties));
/* Initialise the pressure floor */
if (with_hydro)
pressure_floor_init(&pressure_floor_props, &prog_const, &us,
&hydro_properties, params);
else
bzero(&pressure_floor_props, sizeof(struct pressure_floor_props));
/* Initialise the stars properties */
if (with_stars)
stars_props_init(&stars_properties, &prog_const, &us, params,
&hydro_properties, &cosmo);
else
bzero(&stars_properties, sizeof(struct stars_props));
/* Initialise the feedback properties */
if (with_feedback) {
#ifdef FEEDBACK_NONE
if (!with_rt) /* allow swift to run without feedback model if RT is on. */
error("ERROR: Running with feedback but compiled without it.");
#endif
feedback_props_init(&feedback_properties, &prog_const, &us, params,
&hydro_properties, &cosmo);
} else
bzero(&feedback_properties, sizeof(struct feedback_props));
/* Initialize RT properties */
if (with_rt) {
if (hydro_properties.particle_splitting)
error("Can't run with RT and particle splitting as of yet.");
rt_props_init(&rt_properties, &prog_const, &us, params, &cosmo);
} else
bzero(&rt_properties, sizeof(struct rt_props));
/* Initialise the black holes properties */
if (with_black_holes) {
#ifdef BLACK_HOLES_NONE
error("ERROR: Running with black_holes but compiled without it.");
#endif
black_holes_props_init(&black_holes_properties, &prog_const, &us, params,
&hydro_properties, &cosmo);
} else
bzero(&black_holes_properties, sizeof(struct black_holes_props));
/* Initialise the sink properties */
if (with_sinks) {
sink_props_init(&sink_properties, &feedback_properties, &prog_const, &us,
params, &hydro_properties, &cosmo, with_feedback);
} else
bzero(&sink_properties, sizeof(struct sink_props));
/* Initialise the cooling function properties */
#ifdef COOLING_NONE
if (with_cooling) {
error(
"ERROR: Running with cooling calculation"
" but compiled without it.");
}
#endif
bzero(&cooling_func, sizeof(struct cooling_function_data));
if (with_cooling || with_temperature) {
cooling_init(params, &us, &prog_const, &hydro_properties, &cooling_func);
}
if (myrank == 0) cooling_print(&cooling_func);
/* Initialise the star formation law and its properties */
bzero(&starform, sizeof(struct star_formation));
if (with_star_formation) {
#ifdef STAR_FORMATION_NONE
error("ERROR: Running with star formation but compiled without it!");
#endif
starformation_init(params, &prog_const, &us, &hydro_properties, &cosmo,
&entropy_floor, &starform);
}
if (with_star_formation && myrank == 0) starformation_print(&starform);
/* Initialise the chemistry */
bzero(&chemistry, sizeof(struct chemistry_global_data));
chemistry_init(params, &us, &prog_const, &chemistry);
if (myrank == 0) chemistry_print(&chemistry);
/* Initialise the extra i/o */
bzero(&extra_io_props, sizeof(struct extra_io_properties));
extra_io_init(params, &us, &prog_const, &cosmo, &extra_io_props);
/* Initialise the FOF properties */
bzero(&fof_properties, sizeof(struct fof_props));
#ifdef WITH_FOF
if (with_fof) {
fof_init(&fof_properties, params, &prog_const, &us, /*stand-alone=*/0);
if (fof_properties.seed_black_holes_enabled && !with_black_holes) {
if (myrank == 0)
printf(
"Error: Cannot perform FOF seeding without black holes being in "
"use\n");
return 1;
}
}
#endif
/* Initialize power spectra calculation */
if (with_power) {
#ifdef HAVE_FFTW
power_init(&pow_data, params, nr_threads);
#else
error("No FFTW library found. Cannot compute power spectra.");
#endif
} else {
bzero(&pow_data, sizeof(struct power_spectrum_data));
}
/* Be verbose about what happens next */
if (myrank == 0) message("Reading ICs from file '%s'", ICfileName);
if (myrank == 0 && cleanup_h)
message("Cleaning up h-factors (h=%f)", cosmo.h);
if (myrank == 0 && cleanup_sqrt_a)
message("Cleaning up a-factors from velocity (a=%f)", cosmo.a);
fflush(stdout);
/* Get ready to read particles of all kinds */
size_t Ngas = 0, Ngpart = 0, Ngpart_background = 0, Nnupart = 0;
size_t Nspart = 0, Nbpart = 0, Nsink = 0;
double dim[3] = {0., 0., 0.};
/* Prepare struct to store metadata from ICs */
ic_info_init(&ics_metadata, params);
if (myrank == 0) clocks_gettime(&tic);
#if defined(HAVE_HDF5)
#if defined(WITH_MPI)
#if defined(HAVE_PARALLEL_HDF5)
read_ic_parallel(ICfileName, &us, dim, &parts, &gparts, &sinks, &sparts,
&bparts, &Ngas, &Ngpart, &Ngpart_background, &Nnupart,
&Nsink, &Nspart, &Nbpart, &flag_entropy_ICs, with_hydro,
with_gravity, with_sinks, with_stars, with_black_holes,
with_cosmology, cleanup_h, cleanup_sqrt_a, cosmo.h,
cosmo.a, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL,
nr_threads, dry_run, remap_ids, &ics_metadata);
#else
read_ic_serial(ICfileName, &us, dim, &parts, &gparts, &sinks, &sparts,
&bparts, &Ngas, &Ngpart, &Ngpart_background, &Nnupart,
&Nsink, &Nspart, &Nbpart, &flag_entropy_ICs, with_hydro,
with_gravity, with_sinks, with_stars, with_black_holes,
with_cosmology, cleanup_h, cleanup_sqrt_a, cosmo.h, cosmo.a,
myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL, nr_threads,
dry_run, remap_ids, &ics_metadata);
#endif
#else
read_ic_single(ICfileName, &us, dim, &parts, &gparts, &sinks, &sparts,
&bparts, &Ngas, &Ngpart, &Ngpart_background, &Nnupart,
&Nsink, &Nspart, &Nbpart, &flag_entropy_ICs, with_hydro,
with_gravity, with_sinks, with_stars, with_black_holes,
with_cosmology, cleanup_h, cleanup_sqrt_a, cosmo.h, cosmo.a,
nr_threads, dry_run, remap_ids, &ics_metadata);
#endif
#endif
if (myrank == 0) {
clocks_gettime(&toc);
message("Reading initial conditions took %.3f %s.",
clocks_diff(&tic, &toc), clocks_getunit());
fflush(stdout);
}
/* Some checks that we are not doing something stupid */
if (generate_gas_in_ics && flag_entropy_ICs)
error("Can't generate gas if the entropy flag is set in the ICs.");
if (generate_gas_in_ics && !with_cosmology)
error("Can't generate gas if the run is not cosmological.");
#ifdef SWIFT_DEBUG_CHECKS
/* Check once and for all that we don't have unwanted links */
for (size_t k = 0; k < Ngpart; ++k)
if (!dry_run && gparts[k].id_or_neg_offset == 0 &&
(gparts[k].type == swift_type_dark_matter ||
gparts[k].type == swift_type_dark_matter_background))
error("SWIFT does not allow the ID 0 for dark matter.");
if (!with_stars && !dry_run) {
for (size_t k = 0; k < Ngpart; ++k)
if (gparts[k].type == swift_type_stars) error("Linking problem");
}
if (!with_black_holes && !dry_run) {
for (size_t k = 0; k < Ngpart; ++k)
if (gparts[k].type == swift_type_black_hole) error("Linking problem");
}
if (!with_hydro && !dry_run) {
for (size_t k = 0; k < Ngpart; ++k)
if (gparts[k].type == swift_type_gas) error("Linking problem");
}
if (!with_sinks && !dry_run) {
for (size_t k = 0; k < Ngpart; ++k)
if (gparts[k].type == swift_type_sink) error("Linking problem");
}
/* Check that the other links are correctly set */
if (!dry_run)
part_verify_links(parts, gparts, sinks, sparts, bparts, Ngas, Ngpart,
Nsink, Nspart, Nbpart, /*verbose=*/1);
#endif
/* Get the total number of particles across all nodes. */
long long N_total[swift_type_count + 1] = {0};
long long Nbaryons = Ngas + Nspart + Nbpart + Nsink;
#if defined(WITH_MPI)
long long N_long[swift_type_count + 1] = {0};
N_long[swift_type_gas] = Ngas;
N_long[swift_type_dark_matter_background] = Ngpart_background;
N_long[swift_type_sink] = Nsink;
N_long[swift_type_stars] = Nspart;
N_long[swift_type_black_hole] = Nbpart;
N_long[swift_type_neutrino] = Nnupart;
N_long[swift_type_count] = Ngpart;
N_long[swift_type_dark_matter] =
with_gravity ? Ngpart - Ngpart_background - Nbaryons - Nnupart : 0;
MPI_Allreduce(N_long, N_total, swift_type_count + 1, MPI_LONG_LONG_INT,
MPI_SUM, MPI_COMM_WORLD);
#else
N_total[swift_type_gas] = Ngas;
N_total[swift_type_dark_matter_background] = Ngpart_background;
N_total[swift_type_sink] = Nsink;
N_total[swift_type_stars] = Nspart;
N_total[swift_type_black_hole] = Nbpart;
N_total[swift_type_neutrino] = Nnupart;
N_total[swift_type_count] = Ngpart;
N_total[swift_type_dark_matter] =
with_gravity ? Ngpart - Ngpart_background - Nbaryons - Nnupart : 0;
#endif
if (myrank == 0)
message(
"Read %lld gas particles, %lld sink particles, %lld star particles, "
"%lld black hole particles, %lld DM particles, %lld DM background "
"particles, and %lld neutrino DM particles from the ICs.",
N_total[swift_type_gas], N_total[swift_type_sink],
N_total[swift_type_stars], N_total[swift_type_black_hole],
N_total[swift_type_dark_matter],
N_total[swift_type_dark_matter_background],
N_total[swift_type_neutrino]);
const int with_DM_particles = N_total[swift_type_dark_matter] > 0;
const int with_baryon_particles =
(N_total[swift_type_gas] + N_total[swift_type_stars] +
N_total[swift_type_black_hole] + N_total[swift_type_sink] >
0) ||
(with_DM_particles && generate_gas_in_ics);
/* Do we have background DM particles? */
const int with_DM_background_particles =
N_total[swift_type_dark_matter_background] > 0;
/* Do we have neutrino DM particles? */
const int with_neutrinos = N_total[swift_type_neutrino] > 0;
/* Initialise the neutrino properties */
bzero(&neutrino_properties, sizeof(struct neutrino_props));
neutrino_props_init(&neutrino_properties, &prog_const, &us, params, &cosmo,
with_neutrinos);
/* Initialize the space with these data. */
if (myrank == 0) clocks_gettime(&tic);
space_init(&s, params, &cosmo, dim, &hydro_properties, parts, gparts, sinks,
sparts, bparts, Ngas, Ngpart, Nsink, Nspart, Nbpart, Nnupart,
periodic, replicate, remap_ids, generate_gas_in_ics, with_hydro,
with_self_gravity, with_star_formation, with_sinks,
with_DM_particles, with_DM_background_particles, with_neutrinos,
talking, dry_run, nr_nodes);
/* Initialise the line of sight properties. */
if (with_line_of_sight) los_init(s.dim, &los_properties, params);
/* Initialise the lightcone properties */
bzero(&lightcone_array_properties, sizeof(struct lightcone_array_props));
#ifdef WITH_LIGHTCONE
if (with_lightcone)
lightcone_array_init(&lightcone_array_properties, &s, &cosmo, params, &us,
&prog_const, verbose);
else
lightcone_array_properties.nr_lightcones = 0;
#endif
if (myrank == 0) {
clocks_gettime(&toc);
message("space_init took %.3f %s.", clocks_diff(&tic, &toc),
clocks_getunit());
fflush(stdout);
}
/* Initialise the gravity properties */
bzero(&gravity_properties, sizeof(struct gravity_props));
if (with_self_gravity)
gravity_props_init(&gravity_properties, params, &prog_const, &cosmo,
with_cosmology, with_external_gravity,
with_baryon_particles, with_DM_particles,
with_neutrinos, with_DM_background_particles, periodic,
s.dim, s.cdim);
/* Initialize the neutrino response if used */
bzero(&neutrino_response, sizeof(struct neutrino_response));
if (neutrino_properties.use_linear_response)
neutrino_response_init(&neutrino_response, params, &us, s.dim, &cosmo,
&neutrino_properties, &gravity_properties, myrank,
verbose);
/* Initialise the external potential properties */
bzero(&potential, sizeof(struct external_potential));
if (with_external_gravity)
potential_init(params, &prog_const, &us, &s, &potential);
if (myrank == 0) potential_print(&potential);
/* Initialise the forcing terms */
bzero(&forcing_terms, sizeof(struct forcing_terms));
forcing_terms_init(params, &prog_const, &us, &s, &forcing_terms);
if (myrank == 0) forcing_terms_print(&forcing_terms);
/* Initialise the long-range gravity mesh */
if (with_self_gravity && periodic) {
#ifdef HAVE_FFTW
pm_mesh_init(&mesh, &gravity_properties, s.dim, nr_threads);
#else
/* Need the FFTW library if periodic and self gravity. */
error(
"No FFTW library found. Cannot compute periodic long-range forces.");
#endif
} else {
pm_mesh_init_no_mesh(&mesh, s.dim);
}
/* Also update the total counts (in case of changes due to replication) */
Nbaryons = s.nr_parts + s.nr_sparts + s.nr_bparts + s.nr_sinks;
Nnupart = s.nr_nuparts;
#if defined(WITH_MPI)
N_long[swift_type_gas] = s.nr_parts;
N_long[swift_type_dark_matter] =
with_gravity ? s.nr_gparts - Ngpart_background - Nbaryons - Nnupart : 0;
N_long[swift_type_count] = s.nr_gparts;
N_long[swift_type_stars] = s.nr_sparts;
N_long[swift_type_sink] = s.nr_sinks;
N_long[swift_type_black_hole] = s.nr_bparts;
N_long[swift_type_neutrino] = s.nr_nuparts;
MPI_Allreduce(N_long, N_total, swift_type_count + 1, MPI_LONG_LONG_INT,
MPI_SUM, MPI_COMM_WORLD);
#else
N_total[swift_type_gas] = s.nr_parts;
N_total[swift_type_dark_matter] =
with_gravity ? s.nr_gparts - Ngpart_background - Nbaryons - Nnupart : 0;
N_total[swift_type_count] = s.nr_gparts;
N_total[swift_type_stars] = s.nr_sparts;
N_total[swift_type_sink] = s.nr_sinks;
N_total[swift_type_black_hole] = s.nr_bparts;
N_total[swift_type_neutrino] = s.nr_nuparts;
#endif
/* Say a few nice things about the space we just created. */
if (myrank == 0) {
message("space dimensions are [ %.3f %.3f %.3f ].", s.dim[0], s.dim[1],
s.dim[2]);
message("space %s periodic.", s.periodic ? "is" : "isn't");
message("highest-level cell dimensions are [ %i %i %i ].", s.cdim[0],
s.cdim[1], s.cdim[2]);
message("%zi parts in %i cells.", s.nr_parts, s.tot_cells);
message("%zi gparts in %i cells.", s.nr_gparts, s.tot_cells);
message("%zi sinks in %i cells.", s.nr_sinks, s.tot_cells);
message("%zi sparts in %i cells.", s.nr_sparts, s.tot_cells);
message("%zi bparts in %i cells.", s.nr_bparts, s.tot_cells);
message("maximum depth is %d.", s.maxdepth);
fflush(stdout);
}
/* Verify that we are not using basic modes incorrectly */
if (with_hydro && N_total[swift_type_gas] == 0) {
error(
"ERROR: Running with hydrodynamics but no gas particles found in the "
"ICs!");
}
if (with_gravity && N_total[swift_type_count] == 0) {
error(
"ERROR: Running with gravity but no gravity particles found in "
"the ICs!");
}
/* Verify that each particle is in its proper cell. */
if (talking && !dry_run) {
int icount = 0;
space_map_cells_pre(&s, 0, &map_cellcheck, &icount);
message("map_cellcheck picked up %i parts.", icount);
}
/* Verify the maximal depth of cells. */
if (talking && !dry_run) {
int data[2] = {s.maxdepth, 0};
space_map_cells_pre(&s, 0, &map_maxdepth, data);
message("nr of cells at depth %i is %i.", data[0], data[1]);
}
/* Construct the engine policy */
int engine_policies = ENGINE_POLICY | engine_policy_steal;
if (with_drift_all) engine_policies |= engine_policy_drift_all;
if (with_mpole_reconstruction)
engine_policies |= engine_policy_reconstruct_mpoles;
#ifndef MOVING_MESH
if (with_hydro) engine_policies |= engine_policy_hydro;
#else
if (with_hydro) engine_policies |= engine_policy_grid_hydro;
if (with_grid) engine_policies |= engine_policy_grid;
#endif
if (with_self_gravity) engine_policies |= engine_policy_self_gravity;
if (with_external_gravity)
engine_policies |= engine_policy_external_gravity;
if (with_cosmology) engine_policies |= engine_policy_cosmology;
if (with_temperature) engine_policies |= engine_policy_temperature;
if (with_timestep_limiter)
engine_policies |= engine_policy_timestep_limiter;
if (with_timestep_sync) engine_policies |= engine_policy_timestep_sync;
if (with_cooling) engine_policies |= engine_policy_cooling;
if (with_stars) engine_policies |= engine_policy_stars;
if (with_star_formation) engine_policies |= engine_policy_star_formation;
if (with_feedback) engine_policies |= engine_policy_feedback;
if (with_black_holes) engine_policies |= engine_policy_black_holes;
if (with_structure_finding)
engine_policies |= engine_policy_structure_finding;
if (with_fof) engine_policies |= engine_policy_fof;
if (with_csds) engine_policies |= engine_policy_csds;
if (with_line_of_sight) engine_policies |= engine_policy_line_of_sight;
if (with_sinks) engine_policies |= engine_policy_sinks;
if (with_rt) engine_policies |= engine_policy_rt;
if (with_power) engine_policies |= engine_policy_power_spectra;
/* Initialize the engine with the space and policies. */
engine_init(&e, &s, params, output_options, N_total[swift_type_gas],
N_total[swift_type_count], N_total[swift_type_sink],
N_total[swift_type_stars], N_total[swift_type_black_hole],
N_total[swift_type_dark_matter_background],
N_total[swift_type_neutrino], engine_policies, talking, &us,
&prog_const, &cosmo, &hydro_properties, &entropy_floor,
&gravity_properties, &stars_properties, &black_holes_properties,
&sink_properties, &neutrino_properties, &neutrino_response,
&feedback_properties, &pressure_floor_props, &rt_properties,
&mesh, &pow_data, &potential, &forcing_terms, &cooling_func,
&starform, &chemistry, &extra_io_props, &fof_properties,
&los_properties, &lightcone_array_properties, &ics_metadata);
engine_config(/*restart=*/0, /*fof=*/0, &e, params, nr_nodes, myrank,
nr_threads, nr_pool_threads, with_aff, talking, restart_dir,
restart_file, &reparttype);
/* Compute some stats for the star formation */
if (with_star_formation) {
star_formation_first_init_stats(&starform, &e);
}
/* Get some info to the user. */
if (myrank == 0) {
const long long N_DM = N_total[swift_type_dark_matter] +
N_total[swift_type_dark_matter_background];
message(
"Running on %lld gas particles, %lld sink particles, %lld stars "
"particles %lld black hole particles, %lld neutrino particles, and "
"%lld DM particles (%lld gravity particles)",
N_total[swift_type_gas], N_total[swift_type_sink],
N_total[swift_type_stars], N_total[swift_type_black_hole],
N_total[swift_type_neutrino], N_DM, N_total[swift_type_count]);
message(
"from t=%.3e until t=%.3e with %d ranks, %d threads / rank and %d "
"task queues / rank (dt_min=%.3e, dt_max=%.3e)...",
e.time_begin, e.time_end, nr_nodes, e.nr_threads, e.sched.nr_queues,
e.dt_min, e.dt_max);
fflush(stdout);
}
}
/* Time to say good-bye if this was not a serious run. */
if (dry_run) {
#ifdef WITH_MPI
if ((res = MPI_Finalize()) != MPI_SUCCESS)
error("call to MPI_Finalize failed with error %i.", res);
#endif
if (myrank == 0)
message("Time integration ready to start. End of dry-run.");
engine_clean(&e, /*fof=*/0, /*restart=*/0);
free(params);
return 0;
}
/* Initialise the table of Ewald corrections for the gravity checks */
#ifdef SWIFT_GRAVITY_FORCE_CHECKS
if (s.periodic) gravity_exact_force_ewald_init(e.s->dim[0]);
#endif
if (!restart) {
#ifdef WITH_MPI
/* Split the space. */
engine_split(&e, &initial_partition);
#endif
/* Initialise the particles */
engine_init_particles(&e, flag_entropy_ICs, clean_smoothing_length_values);
/* Check that the matter content matches the cosmology given in the
* parameter file. */
if (with_cosmology && with_self_gravity && !dry_run) {
/* Only check neutrino particle masses if we have neutrino particles
* and if the masses are stored unweighted. */
const int check_neutrinos =
s.with_neutrinos && !neutrino_properties.use_delta_f;
space_check_cosmology(&s, &cosmo, with_hydro, myrank, check_neutrinos);
neutrino_check_cosmology(&s, &cosmo, &prog_const, params,
&neutrino_properties, myrank, verbose);
}
/* Write the state of the system before starting time integration. */
#ifdef WITH_CSDS
if (e.policy & engine_policy_csds) {
csds_log_all_particles(e.csds, &e, csds_flag_create);
}
#endif
/* Dump initial state snapshot, if not working with an output list */
if (!e.output_list_snapshots) {
/* Run FoF first, if we're adding FoF info to the snapshot */
if (with_fof && e.snapshot_invoke_fof) {
engine_fof(&e, /*dump_results=*/1, /*dump_debug=*/0,
/*seed_black_holes=*/0, /*buffers allocated=*/1);
}
/* If we want power spectra, output them now as well */
if (with_power)
calc_all_power_spectra(e.power_data, e.s, &e.threadpool, e.verbose);
engine_dump_snapshot(&e, /*fof=*/0);
}
/* Dump initial state statistics, if not working with an output list */
if (!e.output_list_stats) engine_print_stats(&e);
/* Is there a dump before the end of the first time-step? */
engine_io(&e);
}
/* Legend */
if (myrank == 0) {
printf(
"# %6s %14s %12s %12s %14s %9s %12s %12s %12s %12s %12s %16s [%s] "
"%6s %12s [%s] \n",
"Step", "Time", "Scale-factor", "Redshift", "Time-step", "Time-bins",
"Updates", "g-Updates", "s-Updates", "sink-Updates", "b-Updates",
"Wall-clock time", clocks_getunit(), "Props", "Dead time",
clocks_getunit());
fflush(stdout);
}
/* File for the timers */
if (with_verbose_timers) timers_open_file(myrank);
/* Create a name for restart file of this rank. */
if (restart_genname(restart_dir, restart_name, e.nodeID, restart_file, 200) !=
0)
error("Failed to generate restart filename");
/* dump the parameters as used. */
if (myrank == 0) {
const char *usedname = "used_parameters.yml";
const char *unusedname = "unused_parameters.yml";
if (restart) {
/* The used parameters can change, so try to track that. */
struct swift_params tmp;
memcpy(&tmp, params, sizeof(struct swift_params));
parser_compare_params(refparams, &tmp);
/* We write a file, even if nothing has changed. */
char pname[64];
sprintf(pname, "%s.%d", usedname, e.step);
parser_write_params_to_file(&tmp, pname, /*used=*/1);
} else {
/* Write the fully populated used and unused files. */
parser_write_params_to_file(params, usedname, /*used=*/1);
parser_write_params_to_file(params, unusedname, /*used=*/0);
}
}
/* Dump memory use report if collected for the 0 step. */
#ifdef SWIFT_MEMUSE_REPORTS
{
char dumpfile[40];
#ifdef WITH_MPI
snprintf(dumpfile, 40, "memuse_report-rank%d-step%d.dat", engine_rank, 0);
#else
snprintf(dumpfile, 40, "memuse_report-step%d.dat", 0);
#endif // WITH_MPI
memuse_log_dump(dumpfile);
}
#endif
/* Dump MPI requests if collected. */
#if defined(SWIFT_MPIUSE_REPORTS) && defined(WITH_MPI)
{
char dumpfile[40];
snprintf(dumpfile, 40, "mpiuse_report-rank%d-step%d.dat", engine_rank, 0);
mpiuse_log_dump(dumpfile, clocks_start_ticks);
}
#endif
/* Main simulation loop */
/* ==================== */
int force_stop = 0;
for (int j = 0; !engine_is_done(&e) && e.step - 1 != nsteps && !force_stop;
j++) {
/* Reset timers */
timers_reset_all();
/* Take a step. */
force_stop = engine_step(&e);
/* Print the timers. */
if (with_verbose_timers) timers_print(e.step);
/* Shall we write some check-point files?
* Note that this was already done by engine_step() if force_stop is set */
if (e.restart_onexit && e.step - 1 == nsteps && !force_stop)
engine_dump_restarts(&e, /*drifted=*/0, /*force=*/1);
/* Dump the task data using the given frequency. */
if (dump_tasks && (dump_tasks == 1 || j % dump_tasks == 1)) {
#ifdef SWIFT_DEBUG_TASKS
if (dump_tasks_threshold == 0.) task_dump_all(&e, j + 1);
#endif
/* Generate the task statistics. */
char dumpfile[40];
snprintf(dumpfile, 40, "thread_stats-step%d.dat", e.step + 1);
task_dump_stats(dumpfile, &e, dump_tasks_threshold,
/* header = */ 0, /* allranks = */ 1);
}
#ifdef SWIFT_CELL_GRAPH
/* Dump the cell data using the given frequency. */
if (dump_cells && (dump_cells == 1 || j % dump_cells == 1)) {
space_write_cell_hierarchy(e.s, j + 1);
}
#endif
space_write_ghost_stats(e.s, j + 1);
/* Dump memory use report if collected. */
#ifdef SWIFT_MEMUSE_REPORTS
{
char dumpfile[40];
#ifdef WITH_MPI
snprintf(dumpfile, 40, "memuse_report-rank%d-step%d.dat", engine_rank,
j + 1);
#else
snprintf(dumpfile, 40, "memuse_report-step%d.dat", e.step + 1);
#endif // WITH_MPI
memuse_log_dump(dumpfile);
}
#endif
/* Dump MPI requests if collected. */
#if defined(SWIFT_MPIUSE_REPORTS) && defined(WITH_MPI)
{
char dumpfile[80];
snprintf(dumpfile, 80, "mpiuse_report-rank%d-step%d.dat", engine_rank,
j + 1);
mpiuse_log_dump(dumpfile, e.tic_step);
}
#endif
#ifdef SWIFT_DEBUG_THREADPOOL
/* Dump the task data using the given frequency. */
if (dump_threadpool && (dump_threadpool == 1 || j % dump_threadpool == 1)) {
char dumpfile[80];
#ifdef WITH_MPI
snprintf(dumpfile, 80, "threadpool_info-rank%d-step%d.dat", engine_rank,
j + 1);
#else
snprintf(dumpfile, 80, "threadpool_info-step%d.dat", j + 1);
#endif // WITH_MPI
threadpool_dump_log(&e.threadpool, dumpfile, 1);
} else {
threadpool_reset_log(&e.threadpool);
}
#endif
}
/* Write final time information */
if (myrank == 0) {
const double dead_time = e.global_deadtime / (nr_nodes * e.nr_threads);
/* Print some information to the screen */
printf(
" %6d %14e %12.7f %12.7f %14e %4d %4d %12lld %12lld %12lld %12lld "
"%12lld"
" %21.3f %6d %17.3f\n",
e.step, e.time, e.cosmology->a, e.cosmology->z, e.time_step,
e.min_active_bin, e.max_active_bin, e.updates, e.g_updates, e.s_updates,
e.sink_updates, e.b_updates, e.wallclock_time, e.step_props, dead_time);
fflush(stdout);
fprintf(e.file_timesteps,
" %6d %14e %12.7f %12.7f %14e %4d %4d %12lld %12lld %12lld %12lld"
" %12lld %21.3f %6d %17.3f\n",
e.step, e.time, e.cosmology->a, e.cosmology->z, e.time_step,
e.min_active_bin, e.max_active_bin, e.updates, e.g_updates,
e.s_updates, e.sink_updates, e.b_updates, e.wallclock_time,
e.step_props, dead_time);
fflush(e.file_timesteps);
/* Print information to the SFH logger */
if (e.policy & engine_policy_star_formation) {
star_formation_logger_write_to_log_file(
e.sfh_logger, e.time, e.cosmology->a, e.cosmology->z, e.sfh, e.step);
}
}
/* Write final output. */
if (!force_stop && nsteps == -2) {
/* Move forward in time */
e.ti_old = e.ti_current;
e.ti_current = e.ti_end_min;
e.max_active_bin = get_max_active_bin(e.ti_end_min);
e.min_active_bin = get_min_active_bin(e.ti_current, e.ti_old);
e.step += 1;
engine_current_step = e.step;
engine_drift_all(&e, /*drift_mpole=*/0);
/* Write final statistics? */
if (e.output_list_stats) {
if (e.output_list_stats->final_step_dump) engine_print_stats(&e);
} else {
engine_print_stats(&e);
}
#ifdef WITH_CSDS
if (e.policy & engine_policy_csds) {
csds_log_all_particles(e.csds, &e, csds_flag_delete);
/* Write a sentinel timestamp */
if (e.policy & engine_policy_cosmology) {
csds_log_timestamp(e.csds, e.ti_current, e.cosmology->a,
&e.csds->timestamp_offset);
} else {
csds_log_timestamp(e.csds, e.ti_current, e.time,
&e.csds->timestamp_offset);
}
}
#endif
/* Write final snapshot? */
if ((e.output_list_snapshots && e.output_list_snapshots->final_step_dump) ||
!e.output_list_snapshots) {
if (with_fof && e.snapshot_invoke_fof) {
engine_fof(&e, /*dump_results=*/1, /*dump_debug=*/0,
/*seed_black_holes=*/0, /*buffers allocated=*/1);
}
if (with_power) {
calc_all_power_spectra(e.power_data, e.s, &e.threadpool, e.verbose);
}
#ifdef HAVE_VELOCIRAPTOR
if (with_structure_finding && e.snapshot_invoke_stf &&
!e.stf_this_timestep)
velociraptor_invoke(&e, /*linked_with_snap=*/1);
#endif
engine_dump_snapshot(&e, /*fof=*/0);
#ifdef HAVE_VELOCIRAPTOR
if (with_structure_finding && e.snapshot_invoke_stf &&
e.s->gpart_group_data)
swift_free("gpart_group_data", e.s->gpart_group_data);
#endif
}
/* Write final stf? */
#ifdef HAVE_VELOCIRAPTOR
if (with_structure_finding && e.output_list_stf) {
if (e.output_list_stf->final_step_dump && !e.stf_this_timestep)
velociraptor_invoke(&e, /*linked_with_snap=*/0);
}
#endif
/* Write out any remaining lightcone data at the end of the run */
#ifdef WITH_LIGHTCONE
lightcone_array_flush(e.lightcone_array_properties, &(e.threadpool),
e.cosmology, e.internal_units, e.snapshot_units,
/*flush_map_updates=*/1, /*flush_particles=*/1,
/*end_file=*/1, /*dump_all_shells=*/1);
lightcone_array_write_index(e.lightcone_array_properties, e.internal_units,
e.snapshot_units);
#endif
}
/* Remove the stop file if used. Do this anyway, we could have missed the
* stop file if normal exit happened first. */
if (myrank == 0) force_stop = restart_stop_now(restart_dir, 1);
/* Did we want to run a re-submission command just before dying? */
if (myrank == 0 && e.resubmit) {
message("Running the resubmission command:");
restart_resubmit(e.resubmit_command);
fflush(stdout);
fflush(stderr);
message("resubmission command completed.");
}
/* Clean everything */
if (with_verbose_timers) timers_close_file();
if (with_cosmology) cosmology_clean(e.cosmology);
if (e.neutrino_properties->use_linear_response)
neutrino_response_clean(e.neutrino_response);
if (with_self_gravity && s.periodic) pm_mesh_clean(e.mesh);
if (with_stars) stars_props_clean(e.stars_properties);
if (with_cooling || with_temperature) cooling_clean(e.cooling_func);
if (with_feedback) feedback_clean(e.feedback_props);
if (with_lightcone) lightcone_array_clean(e.lightcone_array_properties);
if (with_rt) rt_clean(e.rt_props, restart);
if (with_power) power_clean(e.power_data);
extra_io_clean(e.io_extra_props);
engine_clean(&e, /*fof=*/0, restart);
free(params);
if (restart) free(refparams);
free(output_options);
#ifdef WITH_MPI
partition_clean(&initial_partition, &reparttype);
if ((res = MPI_Finalize()) != MPI_SUCCESS)
error("call to MPI_Finalize failed with error %i.", res);
#endif
/* Say goodbye. */
if (myrank == 0) message("done. Bye.");
/* All is calm, all is bright. */
return 0;
}