/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2024 Jonathan Davies (j.j.davies@ljmu.ac.uk) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Config parameters. */ #include /* Some standard headers. */ #include #include #include #include /* Local headers. */ #include "active.h" #include "error.h" #include "sink_properties.h" #include "version.h" struct exact_density_data { const struct engine *e; const struct space *s; int counter_global; }; /** * @brief Mapper function for the exact sink checks. * * @brief map_data The #sink. * @brief nr_sinks The number of star particles. * @brief extra_data Pointers to the structure containing global interaction * counters. */ void sink_exact_density_compute_mapper(void *map_data, int nr_sinks, void *extra_data) { #ifdef SWIFT_SINK_DENSITY_CHECKS /* Unpack the data */ struct sink *restrict sinks = (struct sink *)map_data; struct exact_density_data *data = (struct exact_density_data *)extra_data; const struct space *s = data->s; const struct engine *e = data->e; const int periodic = s->periodic; const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]}; int counter = 0; for (int i = 0; i < nr_sinks; ++i) { struct sink *si = &sinks[i]; const long long id = si->id; /* Is the particle active and part of the subset to be tested ? */ if (id % SWIFT_SINK_DENSITY_CHECKS == 0 && sink_is_starting(si, e)) { /* Get some information about the particle */ const double pix[3] = {si->x[0], si->x[1], si->x[2]}; const double hi = si->h; const float hi_inv = 1.f / hi; const float hig2 = hi * hi * kernel_gamma2; /* Be ready for the calculation */ int N_density_exact = 0; double rho_exact = 0.; double n_exact = 0.; /* Interact it with all other particles in the space.*/ for (int j = 0; j < (int)s->nr_parts; ++j) { const struct part *pj = &s->parts[j]; /* Compute the pairwise distance. */ double dx = pj->x[0] - pix[0]; double dy = pj->x[1] - pix[1]; double dz = pj->x[2] - pix[2]; /* Now apply periodic BC */ if (periodic) { dx = nearest(dx, dim[0]); dy = nearest(dy, dim[1]); dz = nearest(dz, dim[2]); } const double r2 = dx * dx + dy * dy + dz * dz; /* Interact loop of type 1? */ if (r2 < hig2) { const float mj = pj->mass; float wi, wi_dx; /* Kernel function */ const float r = sqrtf(r2); const float ui = r * hi_inv; kernel_deval(ui, &wi, &wi_dx); /* Flag that we found an inhibited neighbour */ if (part_is_inhibited(pj, e)) { si->inhibited_check_exact = 1; } else { /* Density */ rho_exact += mj * wi; /* Number density */ n_exact += wi; /* Number of neighbours */ N_density_exact++; } } } /* Store the exact answer */ si->N_check_density_exact = N_density_exact; si->rho_check_exact = rho_exact * pow_dimension(hi_inv); si->n_check_exact = n_exact * pow_dimension(hi_inv); counter++; } } atomic_add(&data->counter_global, counter); #else error("Sink checking function called without the corresponding flag."); #endif } /** * @brief Compute the exact interactions for a selection of star particles * by running a brute force loop over all the particles in the simulation. * * Will be incorrect over MPI. * * @param s The #space. * @param e The #engine. */ void sink_exact_density_compute(struct space *s, const struct engine *e) { #ifdef SWIFT_SINK_DENSITY_CHECKS const ticks tic = getticks(); struct exact_density_data data; data.e = e; data.s = s; data.counter_global = 0; threadpool_map(&s->e->threadpool, sink_exact_density_compute_mapper, s->sinks, s->nr_sinks, sizeof(struct sink), 0, &data); if (e->verbose) message("Computed exact densities for %d sinks (took %.3f %s). ", data.counter_global, clocks_from_ticks(getticks() - tic), clocks_getunit()); #else error("Sink checking function called without the corresponding flag."); #endif } /** * @brief Check the star particles' density and force calculations against the * values obtained via the brute-force summation. * * @param s The #space. * @param e The #engine. * @param rel_tol Relative tolerance for the checks */ void sink_exact_density_check(struct space *s, const struct engine *e, const double rel_tol) { #ifdef SWIFT_SINK_DENSITY_CHECKS const ticks tic = getticks(); const struct sink *sinks = s->sinks; const size_t nr_sinks = s->nr_sinks; const double eta = e->sink_properties->eta_neighbours; const double N_ngb_target = (4. / 3.) * M_PI * pow_dimension(kernel_gamma * eta); const double N_ngb_max = N_ngb_target + 2. * e->sink_properties->delta_neighbours; const double N_ngb_min = N_ngb_target - 2. * e->sink_properties->delta_neighbours; /* File name */ char file_name_swift[100]; sprintf(file_name_swift, "sink_checks_swift_step%.4d.dat", e->step); /* Creare files and write header */ FILE *file_swift = fopen(file_name_swift, "w"); if (file_swift == NULL) error("Could not create file '%s'.", file_name_swift); fprintf(file_swift, "# Sink accuracy test - SWIFT DENSITIES\n"); fprintf(file_swift, "# N= %d\n", SWIFT_SINK_DENSITY_CHECKS); fprintf(file_swift, "# periodic= %d\n", s->periodic); fprintf(file_swift, "# N_ngb_target= %f +/- %f\n", N_ngb_target, e->sink_properties->delta_neighbours); fprintf(file_swift, "# Git Branch: %s\n", git_branch()); fprintf(file_swift, "# Git Revision: %s\n", git_revision()); fprintf(file_swift, "# %16s %16s %16s %16s %16s %7s %7s %16s %16s %16s\n", "id", "pos[0]", "pos[1]", "pos[2]", "h", "Nd", "Nf", "rho", "n_rho", "N_ngb"); /* Output particle SWIFT densities */ for (size_t i = 0; i < nr_sinks; ++i) { const struct sink *si = &sinks[i]; const long long id = si->id; const double N_ngb = (4. / 3.) * M_PI * kernel_gamma * kernel_gamma * kernel_gamma * si->h * si->h * si->h * si->n_check; if (id % SWIFT_SINK_DENSITY_CHECKS == 0 && sink_is_starting(si, e)) { fprintf( file_swift, "%18lld %16.8e %16.8e %16.8e %16.8e %7d %7d %16.8e %16.8e %16.8e\n", id, si->x[0], si->x[1], si->x[2], si->h, si->N_check_density, 0, si->rho_check, si->n_check, N_ngb); } } if (e->verbose) message("Written SWIFT densities in file '%s'.", file_name_swift); /* Be nice */ fclose(file_swift); /* File name */ char file_name_exact[100]; sprintf(file_name_exact, "sink_checks_exact_step%.4d.dat", e->step); /* Creare files and write header */ FILE *file_exact = fopen(file_name_exact, "w"); if (file_exact == NULL) error("Could not create file '%s'.", file_name_exact); fprintf(file_exact, "# Sink accuracy test - EXACT DENSITIES\n"); fprintf(file_exact, "# N= %d\n", SWIFT_SINK_DENSITY_CHECKS); fprintf(file_exact, "# periodic= %d\n", s->periodic); fprintf(file_exact, "# N_ngb_target= %f +/- %f\n", N_ngb_target, e->sink_properties->delta_neighbours); fprintf(file_exact, "# Git Branch: %s\n", git_branch()); fprintf(file_exact, "# Git Revision: %s\n", git_revision()); fprintf(file_exact, "# %16s %16s %16s %16s %16s %7s %7s %16s %16s %16s\n", "id", "pos[0]", "pos[1]", "pos[2]", "h", "Nd", "Nf", "rho_exact", "n_rho_exact", "N_ngb"); int wrong_rho = 0; int wrong_n_ngb = 0; int counter = 0; /* Output particle SWIFT densities */ for (size_t i = 0; i < nr_sinks; ++i) { const struct sink *si = &sinks[i]; const long long id = si->id; const int found_inhibited = si->inhibited_check_exact; const double N_ngb = (4. / 3.) * M_PI * kernel_gamma * kernel_gamma * kernel_gamma * si->h * si->h * si->h * si->n_check_exact; if (id % SWIFT_SINK_DENSITY_CHECKS == 0 && sink_is_starting(si, e)) { counter++; fprintf( file_exact, "%18lld %16.8e %16.8e %16.8e %16.8e %7d %7d %16.8e %16.8e %16.8e\n", id, si->x[0], si->x[1], si->x[2], si->h, si->N_check_density_exact, 0, si->rho_check_exact, si->n_check_exact, N_ngb); /* Check that we did not go above the threshold. * Note that we ignore particles that saw an inhibted particle as a * neighbour as we don't know whether that neighbour became inhibited in * that step or not. */ if (!found_inhibited && si->N_check_density_exact != si->N_check_density && (fabsf(si->rho_check / si->rho_check_exact - 1.f) > rel_tol || fabsf(si->rho_check_exact / si->rho_check - 1.f) > rel_tol)) { message("RHO: id=%lld swift=%e exact=%e N_swift=%d N_true=%d", id, si->rho_check, si->rho_check_exact, si->N_check_density, si->N_check_density_exact); wrong_rho++; } if (!found_inhibited && (N_ngb > N_ngb_max || N_ngb < N_ngb_min)) { message("N_NGB: id=%lld exact=%f N_true=%d N_swift=%d", id, N_ngb, si->N_check_density_exact, si->N_check_density); wrong_n_ngb++; } } } if (e->verbose) message("Written exact densities in file '%s'.", file_name_exact); /* Be nice */ fclose(file_exact); if (wrong_rho) error( "Density difference larger than the allowed tolerance for %d " "sink particles! (out of %d particles)", wrong_rho, counter); else message("Verified %d sink particles", counter); /* if (wrong_n_ngb) */ /* error( */ /* "N_ngb difference larger than the allowed tolerance for %d " */ /* "star particles! (out of %d particles)", */ /* wrong_n_ngb, counter); */ /* else */ /* message("Verified %d star particles", counter); */ if (e->verbose) message("Writting brute-force density files took %.3f %s. ", clocks_from_ticks(getticks() - tic), clocks_getunit()); #else error("Sink checking function called without the corresponding flag."); #endif }