/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk), * Matthieu Schaller (schaller@strw.leidenuniv.nl). * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Config parameters. */ #include #if defined(HAVE_HDF5) && defined(WITH_MPI) && !defined(HAVE_PARALLEL_HDF5) /* Some standard headers. */ #include #include #include #include #include #include #include #include /* This object's header. */ #include "serial_io.h" /* Local includes. */ #include "black_holes_io.h" #include "chemistry_io.h" #include "common_io.h" #include "dimension.h" #include "engine.h" #include "error.h" #include "gravity_io.h" #include "gravity_properties.h" #include "hydro_io.h" #include "hydro_properties.h" #include "io_properties.h" #include "memuse.h" #include "mhd_io.h" #include "output_list.h" #include "output_options.h" #include "part.h" #include "part_type.h" #include "rt_io.h" #include "sink_io.h" #include "star_formation_io.h" #include "stars_io.h" #include "tools.h" #include "units.h" #include "version.h" #include "xmf.h" /* Max number of entries that can be written for a given particle type */ static const int io_max_size_output_list = 100; /** * @brief Reads a data array from a given HDF5 group. * * @param grp The group from which to read. * @param props The #io_props of the field to read * @param N The number of particles to read on this rank. * @param N_total The total number of particles on all ranks. * @param offset The offset position where this rank starts reading. * @param internal_units The #unit_system used internally * @param ic_units The #unit_system used in the ICs * @param cleanup_h Are we removing h-factors from the ICs? * @param cleanup_sqrt_a Are we cleaning-up the sqrt(a) factors in the Gadget * IC velocities? * @param h The value of the reduced Hubble constant to use for cleaning. * @param a The current value of the scale-factor. * * @todo A better version using HDF5 hyper-slabs to read the file directly into * the part array will be written once the structures have been stabilized. */ void read_array_serial(hid_t grp, const struct io_props props, size_t N, long long N_total, long long offset, const struct unit_system* internal_units, const struct unit_system* ic_units, int cleanup_h, int cleanup_sqrt_a, double h, double a) { const size_t typeSize = io_sizeof_type(props.type); const size_t copySize = typeSize * props.dimension; const size_t num_elements = N * props.dimension; /* Check whether the dataspace exists or not */ const htri_t exist = H5Lexists(grp, props.name, 0); if (exist < 0) { error("Error while checking the existence of data set '%s'.", props.name); } else if (exist == 0) { if (props.importance == COMPULSORY) { error("Compulsory data set '%s' not present in the file.", props.name); } else { /* Create a single instance of the default value */ float* temp = (float*)malloc(copySize); for (int i = 0; i < props.dimension; ++i) temp[i] = props.default_value; /* Copy it everywhere in the particle array */ for (size_t i = 0; i < N; ++i) memcpy(props.field + i * props.partSize, temp, copySize); free(temp); return; } } /* message( "Reading %s '%s' array...", importance == COMPULSORY ? */ /* "compulsory": "optional ", name); */ /* fflush(stdout); */ /* Open data space */ const hid_t h_data = H5Dopen(grp, props.name, H5P_DEFAULT); if (h_data < 0) error("Error while opening data space '%s'.", props.name); /* Allocate temporary buffer */ void* temp = malloc(num_elements * typeSize); if (temp == NULL) error("Unable to allocate memory for temporary buffer"); /* Prepare information for hyper-slab */ hsize_t shape[2], offsets[2]; int rank; if (props.dimension > 1) { rank = 2; shape[0] = N; shape[1] = props.dimension; offsets[0] = offset; offsets[1] = 0; } else { rank = 2; shape[0] = N; shape[1] = 1; offsets[0] = offset; offsets[1] = 0; } /* Create data space in memory */ const hid_t h_memspace = H5Screate_simple(rank, shape, NULL); /* Select hyper-slab in file */ const hid_t h_filespace = H5Dget_space(h_data); H5Sselect_hyperslab(h_filespace, H5S_SELECT_SET, offsets, NULL, shape, NULL); /* Read HDF5 dataspace in temporary buffer */ /* Dirty version that happens to work for vectors but should be improved */ /* Using HDF5 dataspaces would be better */ const hid_t h_err = H5Dread(h_data, io_hdf5_type(props.type), h_memspace, h_filespace, H5P_DEFAULT, temp); if (h_err < 0) error("Error while reading data array '%s'.", props.name); /* Unit conversion if necessary */ const double factor = units_conversion_factor(ic_units, internal_units, props.units); if (factor != 1. && exist != 0) { /* message("Converting ! factor=%e", factor); */ if (io_is_double_precision(props.type)) { double* temp_d = (double*)temp; for (size_t i = 0; i < num_elements; ++i) temp_d[i] *= factor; } else { float* temp_f = (float*)temp; #ifdef SWIFT_DEBUG_CHECKS float maximum = 0.f; float minimum = FLT_MAX; #endif /* Loop that converts the Units */ for (size_t i = 0; i < num_elements; ++i) { #ifdef SWIFT_DEBUG_CHECKS /* Find the absolute minimum and maximum values */ const float abstemp_f = fabsf(temp_f[i]); if (abstemp_f != 0.f) { maximum = max(maximum, abstemp_f); minimum = min(minimum, abstemp_f); } #endif /* Convert the float units */ temp_f[i] *= factor; } #ifdef SWIFT_DEBUG_CHECKS /* The two possible errors: larger than float or smaller * than float precision. */ if (factor * maximum > FLT_MAX) { error("Unit conversion results in numbers larger than floats"); } else if (factor * minimum < FLT_MIN) { error("Numbers smaller than float precision"); } #endif } } /* Clean-up h if necessary */ const float h_factor_exp = units_h_factor(internal_units, props.units); if (cleanup_h && h_factor_exp != 0.f && exist != 0) { /* message("Multipltying '%s' by h^%f=%f", props.name, h_factor_exp, * h_factor); */ if (io_is_double_precision(props.type)) { double* temp_d = (double*)temp; const double h_factor = pow(h, h_factor_exp); for (size_t i = 0; i < num_elements; ++i) temp_d[i] *= h_factor; } else { float* temp_f = (float*)temp; const float h_factor = pow(h, h_factor_exp); for (size_t i = 0; i < num_elements; ++i) temp_f[i] *= h_factor; } } /* Clean-up a if necessary */ if (cleanup_sqrt_a && a != 1. && (strcmp(props.name, "Velocities") == 0)) { if (io_is_double_precision(props.type)) { double* temp_d = (double*)temp; const double vel_factor = sqrt(a); for (size_t i = 0; i < num_elements; ++i) temp_d[i] *= vel_factor; } else { float* temp_f = (float*)temp; const float vel_factor = sqrt(a); for (size_t i = 0; i < num_elements; ++i) temp_f[i] *= vel_factor; } } /* Copy temporary buffer to particle data */ char* temp_c = (char*)temp; for (size_t i = 0; i < N; ++i) memcpy(props.field + i * props.partSize, &temp_c[i * copySize], copySize); /* Free and close everything */ free(temp); H5Sclose(h_filespace); H5Sclose(h_memspace); H5Dclose(h_data); } void prepare_array_serial( const struct engine* e, hid_t grp, const char* fileName, FILE* xmfFile, const char* partTypeGroupName, const struct io_props props, const unsigned long long N_total, const enum lossy_compression_schemes lossy_compression, const struct unit_system* internal_units, const struct unit_system* snapshot_units) { /* Create data space */ const hid_t h_space = H5Screate(H5S_SIMPLE); if (h_space < 0) error("Error while creating data space for field '%s'.", props.name); /* Decide what chunk size to use based on compression */ int log2_chunk_size = 20; int rank = 0; hsize_t shape[2]; hsize_t chunk_shape[2]; if (props.dimension > 1) { rank = 2; shape[0] = N_total; shape[1] = props.dimension; chunk_shape[0] = 1 << log2_chunk_size; chunk_shape[1] = props.dimension; } else { rank = 1; shape[0] = N_total; shape[1] = 0; chunk_shape[0] = 1 << log2_chunk_size; chunk_shape[1] = 0; } /* Make sure the chunks are not larger than the dataset */ if (chunk_shape[0] > N_total) chunk_shape[0] = N_total; /* Change shape of data space */ hid_t h_err = H5Sset_extent_simple(h_space, rank, shape, shape); if (h_err < 0) error("Error while changing data space shape for field '%s'.", props.name); /* Dataset type */ hid_t h_type = H5Tcopy(io_hdf5_type(props.type)); /* Dataset properties */ hid_t h_prop = H5Pcreate(H5P_DATASET_CREATE); /* Set chunk size if have some particles */ if (N_total > 0) { h_err = H5Pset_chunk(h_prop, rank, chunk_shape); if (h_err < 0) error("Error while setting chunk size (%llu, %llu) for field '%s'.", (unsigned long long)chunk_shape[0], (unsigned long long)chunk_shape[1], props.name); } /* Are we imposing some form of lossy compression filter? */ char comp_buffer[32] = "None"; if (lossy_compression != compression_write_lossless) set_hdf5_lossy_compression(&h_prop, &h_type, lossy_compression, props.name, comp_buffer); /* Impose GZIP and shuffle data compression */ if (e->snapshot_compression > 0 && N_total > 0) { h_err = H5Pset_shuffle(h_prop); if (h_err < 0) error("Error while setting shuffling options for field '%s'.", props.name); h_err = H5Pset_deflate(h_prop, e->snapshot_compression); if (h_err < 0) error("Error while setting compression options for field '%s'.", props.name); } /* Impose check-sum to verify data corruption */ if (N_total > 0) { h_err = H5Pset_fletcher32(h_prop); if (h_err < 0) error("Error while setting checksum options for field '%s'.", props.name); } /* Create dataset */ const hid_t h_data = H5Dcreate(grp, props.name, h_type, h_space, H5P_DEFAULT, h_prop, H5P_DEFAULT); if (h_data < 0) error("Error while creating dataspace '%s'.", props.name); /* Write XMF description for this data set */ if (xmfFile != NULL) xmf_write_line(xmfFile, fileName, /*distributed=*/0, partTypeGroupName, props.name, N_total, props.dimension, props.type); /* Write unit conversion factors for this data set */ char buffer[FIELD_BUFFER_SIZE] = {0}; units_cgs_conversion_string(buffer, snapshot_units, props.units, props.scale_factor_exponent); float baseUnitsExp[5]; units_get_base_unit_exponents_array(baseUnitsExp, props.units); io_write_attribute_f(h_data, "U_M exponent", baseUnitsExp[UNIT_MASS]); io_write_attribute_f(h_data, "U_L exponent", baseUnitsExp[UNIT_LENGTH]); io_write_attribute_f(h_data, "U_t exponent", baseUnitsExp[UNIT_TIME]); io_write_attribute_f(h_data, "U_I exponent", baseUnitsExp[UNIT_CURRENT]); io_write_attribute_f(h_data, "U_T exponent", baseUnitsExp[UNIT_TEMPERATURE]); io_write_attribute_f(h_data, "h-scale exponent", 0.f); io_write_attribute_f(h_data, "a-scale exponent", props.scale_factor_exponent); io_write_attribute_s(h_data, "Expression for physical CGS units", buffer); io_write_attribute_s(h_data, "Lossy compression filter", comp_buffer); io_write_attribute_b(h_data, "Value stored as physical", props.is_physical); io_write_attribute_b(h_data, "Property can be converted to comoving", props.is_convertible_to_comoving); /* Write the actual number this conversion factor corresponds to */ const double factor = units_cgs_conversion_factor(snapshot_units, props.units); io_write_attribute_d( h_data, "Conversion factor to CGS (not including cosmological corrections)", factor); io_write_attribute_d( h_data, "Conversion factor to physical CGS (including cosmological corrections)", factor * pow(e->cosmology->a, props.scale_factor_exponent)); #ifdef SWIFT_DEBUG_CHECKS if (strlen(props.description) == 0) error("Invalid (empty) description of the field '%s'", props.name); #endif /* Write the full description */ io_write_attribute_s(h_data, "Description", props.description); /* Close everything */ H5Tclose(h_type); H5Pclose(h_prop); H5Dclose(h_data); H5Sclose(h_space); } /** * @brief Writes a data array in given HDF5 group. * * @param e The #engine we are writing from. * @param grp The group in which to write. * @param fileName The name of the file in which the data is written * @param xmfFile The FILE used to write the XMF description * @param partTypeGroupName The name of the group containing the particles in * the HDF5 file. * @param props The #io_props of the field to read * @param N The number of particles to write. * @param N_total The total number of particles on all ranks. * @param offset The offset position where this rank starts writing. * @param lossy_compression Lossy compression filter to apply. * @param mpi_rank The MPI rank of this node * @param internal_units The #unit_system used internally * @param snapshot_units The #unit_system used in the snapshots * * @todo A better version using HDF5 hyper-slabs to write the file directly from * the part array will be written once the structures have been stabilized. */ void write_array_serial(const struct engine* e, hid_t grp, char* fileName, FILE* xmfFile, const char* partTypeGroupName, const struct io_props props, const size_t N, const long long N_total, const int mpi_rank, const long long offset, const enum lossy_compression_schemes lossy_compression, const struct unit_system* internal_units, const struct unit_system* snapshot_units) { const size_t typeSize = io_sizeof_type(props.type); const size_t num_elements = N * props.dimension; /* message("Writing '%s' array...", props.name); */ /* Prepare the arrays in the file */ if (mpi_rank == 0) prepare_array_serial(e, grp, fileName, xmfFile, partTypeGroupName, props, N_total, lossy_compression, internal_units, snapshot_units); /* Allocate temporary buffer */ void* temp = NULL; if (swift_memalign("writebuff", (void**)&temp, IO_BUFFER_ALIGNMENT, num_elements * typeSize) != 0) error("Unable to allocate temporary i/o buffer"); /* Copy the particle data to the temporary buffer */ io_copy_temp_buffer(temp, e, props, N, internal_units, snapshot_units); /* Construct information for the hyper-slab */ int rank; hsize_t shape[2]; hsize_t offsets[2]; if (props.dimension > 1) { rank = 2; shape[0] = N; shape[1] = props.dimension; offsets[0] = offset; offsets[1] = 0; } else { rank = 1; shape[0] = N; shape[1] = 0; offsets[0] = offset; offsets[1] = 0; } /* Create data space in memory */ const hid_t h_memspace = H5Screate(H5S_SIMPLE); if (h_memspace < 0) error("Error while creating data space (memory) for field '%s'.", props.name); /* Change shape of memory data space */ hid_t h_err = H5Sset_extent_simple(h_memspace, rank, shape, NULL); if (h_err < 0) error("Error while changing data space (memory) shape for field '%s'.", props.name); /* Open pre-existing data set */ const hid_t h_data = H5Dopen(grp, props.name, H5P_DEFAULT); if (h_data < 0) error("Error while opening dataset '%s'.", props.name); /* Select data space in that data set */ const hid_t h_filespace = H5Dget_space(h_data); H5Sselect_hyperslab(h_filespace, H5S_SELECT_SET, offsets, NULL, shape, NULL); /* Write temporary buffer to HDF5 dataspace */ h_err = H5Dwrite(h_data, io_hdf5_type(props.type), h_memspace, h_filespace, H5P_DEFAULT, temp); if (h_err < 0) error("Error while writing data array '%s'.", props.name); /* Free and close everything */ swift_free("writebuff", temp); H5Dclose(h_data); H5Sclose(h_memspace); H5Sclose(h_filespace); } /** * @brief Reads an HDF5 initial condition file (GADGET-3 type) * * @param fileName The file to read. * @param internal_units The system units used internally * @param dim (output) The dimension of the volume read from the file. * @param parts (output) The array of #part (gas particles) read from the file. * @param gparts (output) The array of #gpart read from the file. * @param sinks (output) Array of #sink particles. * @param sparts (output) Array of #spart particles. * @param bparts (output) Array of #bpart particles. * @param Ngas (output) The number of #part read from the file on that node. * @param Ngparts (output) The number of #gpart read from the file on that node. * @param Ngparts_background (output) The number of background #gpart (type 2) * @param Nnuparts (output) The number of neutrino #gpart (type 6) * read from the file on that node. * @param Nsinks (output) The number of #sink read from the file on that node. * @param Nstars (output) The number of #spart read from the file on that node. * @param Nblackholes (output) The number of #bpart read from the file on that * node. * @param flag_entropy (output) 1 if the ICs contained Entropy in the * InternalEnergy field * @param with_hydro Are we reading gas particles ? * @param with_gravity Are we reading/creating #gpart arrays ? * @param with_sink Are we reading sink particles ? * @param with_stars Are we reading star particles ? * @param with_black_holes Are we reading black hole particles ? * @param with_cosmology Are we running with cosmology ? * @param cleanup_h Are we cleaning-up h-factors from the quantities we read? * @param cleanup_sqrt_a Are we cleaning-up the sqrt(a) factors in the Gadget * IC velocities? * @param h The value of the reduced Hubble constant to use for correction. * @param a The current value of the scale-factor. * @param mpi_rank The MPI rank of this node * @param mpi_size The number of MPI ranks * @param comm The MPI communicator * @param info The MPI information object * @param n_threads The number of threads to use for local operations. * @param dry_run If 1, don't read the particle. Only allocates the arrays. * @param remap_ids Are we ignoring the ICs' IDs and remapping them to [1, N[ ? * @param ics_metadata Will store metadata group copied from the ICs file * * Opens the HDF5 file fileName and reads the particles contained * in the parts array. N is the returned number of particles found * in the file. * * @warning Can not read snapshot distributed over more than 1 file !!! * @todo Read snapshots distributed in more than one file. * */ void read_ic_serial(char* fileName, const struct unit_system* internal_units, double dim[3], struct part** parts, struct gpart** gparts, struct sink** sinks, struct spart** sparts, struct bpart** bparts, size_t* Ngas, size_t* Ngparts, size_t* Ngparts_background, size_t* Nnuparts, size_t* Nsinks, size_t* Nstars, size_t* Nblackholes, int* flag_entropy, const int with_hydro, const int with_gravity, const int with_sink, const int with_stars, const int with_black_holes, const int with_cosmology, const int cleanup_h, const int cleanup_sqrt_a, double h, double a, const int mpi_rank, int mpi_size, MPI_Comm comm, MPI_Info info, const int n_threads, const int dry_run, const int remap_ids, struct ic_info* ics_metadata) { hid_t h_file = 0, h_grp = 0; /* GADGET has only cubic boxes (in cosmological mode) */ double boxSize[3] = {0.0, -1.0, -1.0}; long long numParticles[swift_type_count] = {0}; long long numParticles_highWord[swift_type_count] = {0}; size_t N[swift_type_count] = {0}; long long N_total[swift_type_count] = {0}; long long offset[swift_type_count] = {0}; int dimension = 3; /* Assume 3D if nothing is specified */ size_t Ndm = 0; size_t Ndm_background = 0; size_t Ndm_neutrino = 0; struct unit_system* ic_units = (struct unit_system*)malloc(sizeof(struct unit_system)); /* Initialise counters */ *Ngas = 0, *Ngparts = 0, *Ngparts_background = 0, *Nstars = 0, *Nblackholes = 0, *Nsinks = 0, *Nnuparts = 0; /* First read some information about the content */ if (mpi_rank == 0) { /* Open file */ /* message("Opening file '%s' as IC.", fileName); */ h_file = H5Fopen(fileName, H5F_ACC_RDONLY, H5P_DEFAULT); if (h_file < 0) error("Error while opening file '%s' for initial read.", fileName); /* Open header to read simulation properties */ /* message("Reading file header..."); */ h_grp = H5Gopen(h_file, "/Header", H5P_DEFAULT); if (h_grp < 0) error("Error while opening file header\n"); /* Check the dimensionality of the ICs (if the info exists) */ const hid_t hid_dim = H5Aexists(h_grp, "Dimension"); if (hid_dim < 0) error("Error while testing existance of 'Dimension' attribute"); if (hid_dim > 0) io_read_attribute(h_grp, "Dimension", INT, &dimension); if (dimension != hydro_dimension) error("ICs dimensionality (%dD) does not match code dimensionality (%dD)", dimension, (int)hydro_dimension); /* Check whether the number of files is specified (if the info exists) */ const hid_t hid_files = H5Aexists(h_grp, "NumFilesPerSnapshot"); int num_files = 1; if (hid_files < 0) error( "Error while testing the existance of 'NumFilesPerSnapshot' " "attribute"); if (hid_files > 0) io_read_attribute(h_grp, "NumFilesPerSnapshot", INT, &num_files); if (num_files != 1) error( "ICs are split over multiples files (%d). SWIFT cannot handle this " "case. The script /tools/combine_ics.py is availalbe in the " "repository " "to combine files into a valid input file.", num_files); /* Read the relevant information and print status */ int flag_entropy_temp[swift_type_count]; io_read_attribute(h_grp, "Flag_Entropy_ICs", INT, flag_entropy_temp); *flag_entropy = flag_entropy_temp[0]; io_read_attribute(h_grp, "BoxSize", DOUBLE, boxSize); io_read_attribute(h_grp, "NumPart_Total", LONGLONG, numParticles); io_read_attribute(h_grp, "NumPart_Total_HighWord", LONGLONG, numParticles_highWord); /* Check that the user is not doing something silly when they e.g. restart * from a snapshot by asserting that the current scale-factor (from * parameter file) and the redshift in the header are consistent */ if (with_cosmology) { io_assert_valid_header_cosmology(h_grp, a); } for (int ptype = 0; ptype < swift_type_count; ++ptype) N_total[ptype] = (numParticles[ptype]) + (numParticles_highWord[ptype] << 32); /* Get the box size if not cubic */ dim[0] = boxSize[0]; dim[1] = (boxSize[1] < 0) ? boxSize[0] : boxSize[1]; dim[2] = (boxSize[2] < 0) ? boxSize[0] : boxSize[2]; /* Change box size in the 1D and 2D case */ if (hydro_dimension == 2) dim[2] = min(dim[0], dim[1]); else if (hydro_dimension == 1) dim[2] = dim[1] = dim[0]; /* Convert the box size if we want to clean-up h-factors */ if (cleanup_h) { dim[0] /= h; dim[1] /= h; dim[2] /= h; } /* message("Found %lld particles in a %speriodic box of size [%f %f %f].", N_total, (periodic ? "": "non-"), dim[0], dim[1], dim[2]); */ /* Close header */ H5Gclose(h_grp); /* Read the unit system used in the ICs */ if (ic_units == NULL) error("Unable to allocate memory for IC unit system"); io_read_unit_system(h_file, ic_units, internal_units, mpi_rank); if (units_are_equal(ic_units, internal_units)) { message("IC and internal units match. No conversion needed."); } else { message("Conversion needed from:"); message("(ICs) Unit system: U_M = %e g.", ic_units->UnitMass_in_cgs); message("(ICs) Unit system: U_L = %e cm.", ic_units->UnitLength_in_cgs); message("(ICs) Unit system: U_t = %e s.", ic_units->UnitTime_in_cgs); message("(ICs) Unit system: U_I = %e A.", ic_units->UnitCurrent_in_cgs); message("(ICs) Unit system: U_T = %e K.", ic_units->UnitTemperature_in_cgs); message("to:"); message("(internal) Unit system: U_M = %e g.", internal_units->UnitMass_in_cgs); message("(internal) Unit system: U_L = %e cm.", internal_units->UnitLength_in_cgs); message("(internal) Unit system: U_t = %e s.", internal_units->UnitTime_in_cgs); message("(internal) Unit system: U_I = %e A.", internal_units->UnitCurrent_in_cgs); message("(internal) Unit system: U_T = %e K.", internal_units->UnitTemperature_in_cgs); } /* Read metadata from ICs file */ ic_info_read_hdf5(ics_metadata, h_file); /* Close file */ H5Fclose(h_file); } /* Convert the dimensions of the box */ for (int j = 0; j < 3; j++) dim[j] *= units_conversion_factor(ic_units, internal_units, UNIT_CONV_LENGTH); /* Now need to broadcast that information to all ranks. */ MPI_Bcast(flag_entropy, 1, MPI_INT, 0, comm); MPI_Bcast(N_total, swift_type_count, MPI_LONG_LONG_INT, 0, comm); MPI_Bcast(dim, 3, MPI_DOUBLE, 0, comm); MPI_Bcast(ic_units, sizeof(struct unit_system), MPI_BYTE, 0, comm); ic_info_struct_broadcast(ics_metadata, 0); /* Divide the particles among the tasks. */ for (int ptype = 0; ptype < swift_type_count; ++ptype) { offset[ptype] = mpi_rank * N_total[ptype] / mpi_size; N[ptype] = (mpi_rank + 1) * N_total[ptype] / mpi_size - offset[ptype]; } /* Allocate memory to store SPH particles */ if (with_hydro) { *Ngas = N[0]; if (swift_memalign("parts", (void**)parts, part_align, *Ngas * sizeof(struct part)) != 0) error("Error while allocating memory for SPH particles"); bzero(*parts, *Ngas * sizeof(struct part)); } /* Allocate memory to store sinks particles */ if (with_sink) { *Nsinks = N[swift_type_sink]; if (swift_memalign("sinks", (void**)sinks, sink_align, *Nsinks * sizeof(struct sink)) != 0) error("Error while allocating memory for sink particles"); bzero(*sinks, *Nsinks * sizeof(struct sink)); } /* Allocate memory to store stars particles */ if (with_stars) { *Nstars = N[swift_type_stars]; if (swift_memalign("sparts", (void**)sparts, spart_align, *Nstars * sizeof(struct spart)) != 0) error("Error while allocating memory for stars particles"); bzero(*sparts, *Nstars * sizeof(struct spart)); } /* Allocate memory to store stars particles */ if (with_black_holes) { *Nblackholes = N[swift_type_black_hole]; if (swift_memalign("bparts", (void**)bparts, bpart_align, *Nblackholes * sizeof(struct bpart)) != 0) error("Error while allocating memory for black hole particles"); bzero(*bparts, *Nblackholes * sizeof(struct bpart)); } /* Allocate memory to store all gravity particles */ if (with_gravity) { Ndm = N[swift_type_dark_matter]; Ndm_background = N[swift_type_dark_matter_background]; Ndm_neutrino = N[swift_type_neutrino]; *Ngparts = (with_hydro ? N[swift_type_gas] : 0) + N[swift_type_dark_matter] + N[swift_type_dark_matter_background] + N[swift_type_neutrino] + (with_sink ? N[swift_type_sink] : 0) + (with_stars ? N[swift_type_stars] : 0) + (with_black_holes ? N[swift_type_black_hole] : 0); *Ngparts_background = Ndm_background; *Nnuparts = Ndm_neutrino; if (swift_memalign("gparts", (void**)gparts, gpart_align, *Ngparts * sizeof(struct gpart)) != 0) error("Error while allocating memory for gravity particles"); bzero(*gparts, *Ngparts * sizeof(struct gpart)); } /* message("Allocated %8.2f MB for particles.", *N * sizeof(struct part) / */ /* (1024.*1024.)); */ /* message("BoxSize = %lf", dim[0]); */ /* message("NumPart = [%zd, %zd] Total = %zd", *Ngas, Ndm, *Ngparts); */ /* For dry runs, only need to do this on rank 0 */ if (dry_run) mpi_size = 1; /* Now loop over ranks and read the data */ for (int rank = 0; rank < mpi_size; ++rank) { /* Is it this rank's turn to read ? */ if (rank == mpi_rank) { /* Set the minimal API version to avoid issues with advanced features */ hid_t h_props = H5Pcreate(H5P_FILE_ACCESS); herr_t err = H5Pset_libver_bounds(h_props, HDF5_LOWEST_FILE_FORMAT_VERSION, HDF5_HIGHEST_FILE_FORMAT_VERSION); if (err < 0) error("Error setting the hdf5 API version"); h_file = H5Fopen(fileName, H5F_ACC_RDONLY, h_props); if (h_file < 0) error("Error while opening file '%s' on rank %d.", fileName, mpi_rank); /* Loop over all particle types */ for (int ptype = 0; ptype < swift_type_count; ptype++) { /* Don't do anything if no particle of this kind */ if (N[ptype] == 0) continue; /* Open the particle group in the file */ char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d", ptype); h_grp = H5Gopen(h_file, partTypeGroupName, H5P_DEFAULT); if (h_grp < 0) error("Error while opening particle group %s.", partTypeGroupName); int num_fields = 0; struct io_props list[io_max_size_output_list]; bzero(list, io_max_size_output_list * sizeof(struct io_props)); size_t Nparticles = 0; /* Read particle fields into the particle structure */ switch (ptype) { case swift_type_gas: if (with_hydro) { Nparticles = *Ngas; hydro_read_particles(*parts, list, &num_fields); num_fields += mhd_read_particles(*parts, list + num_fields); num_fields += chemistry_read_particles(*parts, list + num_fields); num_fields += rt_read_particles(*parts, list + num_fields); } break; case swift_type_dark_matter: if (with_gravity) { Nparticles = Ndm; darkmatter_read_particles(*gparts, list, &num_fields); } break; case swift_type_dark_matter_background: if (with_gravity) { Nparticles = Ndm_background; darkmatter_read_particles(*gparts + Ndm, list, &num_fields); } break; case swift_type_neutrino: if (with_gravity) { Nparticles = Ndm_neutrino; darkmatter_read_particles(*gparts + Ndm + Ndm_background, list, &num_fields); } break; case swift_type_sink: if (with_sink) { Nparticles = *Nsinks; sink_read_particles(*sinks, list, &num_fields); } break; case swift_type_stars: if (with_stars) { Nparticles = *Nstars; stars_read_particles(*sparts, list, &num_fields); num_fields += star_formation_read_particles(*sparts, list + num_fields); num_fields += rt_read_stars(*sparts, list + num_fields); } break; case swift_type_black_hole: if (with_black_holes) { Nparticles = *Nblackholes; black_holes_read_particles(*bparts, list, &num_fields); } break; default: if (mpi_rank == 0) message("Particle Type %d not yet supported. Particles ignored", ptype); } /* Read everything */ if (!dry_run) for (int i = 0; i < num_fields; ++i) { /* If we are remapping ParticleIDs later, don't need to read them. */ if (remap_ids && strcmp(list[i].name, "ParticleIDs") == 0) continue; /* Read array. */ read_array_serial(h_grp, list[i], Nparticles, N_total[ptype], offset[ptype], internal_units, ic_units, cleanup_h, cleanup_sqrt_a, h, a); } /* Close particle group */ H5Gclose(h_grp); } /* Close file */ H5Fclose(h_file); H5Pclose(h_props); } /* Wait for the read of the reading to complete */ MPI_Barrier(comm); } /* If we are remapping ParticleIDs later, start by setting them to 1. */ if (remap_ids) io_set_ids_to_one(*gparts, *Ngparts); /* Duplicate the parts for gravity */ if (!dry_run && with_gravity) { /* Let's initialise a bit of thread parallelism here */ struct threadpool tp; threadpool_init(&tp, n_threads); /* Prepare the DM particles */ io_prepare_dm_gparts(&tp, *gparts, Ndm); /* Prepare the DM background particles */ io_prepare_dm_background_gparts(&tp, *gparts + Ndm, Ndm_background); /* Prepare the DM neutrino particles */ io_prepare_dm_neutrino_gparts(&tp, *gparts + Ndm + Ndm_background, Ndm_neutrino); /* Duplicate the hydro particles into gparts */ if (with_hydro) io_duplicate_hydro_gparts(&tp, *parts, *gparts, *Ngas, Ndm + Ndm_background + Ndm_neutrino); /* Duplicate the sink particles into gparts */ if (with_sink) io_duplicate_sinks_gparts(&tp, *sinks, *gparts, *Nsinks, Ndm + Ndm_background + Ndm_neutrino + *Ngas); /* Duplicate the stars particles into gparts */ if (with_stars) io_duplicate_stars_gparts( &tp, *sparts, *gparts, *Nstars, Ndm + Ndm_background + Ndm_neutrino + *Ngas + *Nsinks); /* Duplicate the black holes particles into gparts */ if (with_black_holes) io_duplicate_black_holes_gparts( &tp, *bparts, *gparts, *Nblackholes, Ndm + Ndm_background + Ndm_neutrino + *Ngas + *Nsinks + *Nstars); threadpool_clean(&tp); } /* message("Done Reading particles..."); */ /* Clean up */ free(ic_units); } /** * @brief Writes an HDF5 output file (GADGET-3 type) with its XMF descriptor * * @param e The engine containing all the system. * @param internal_units The #unit_system used internally * @param snapshot_units The #unit_system used in the snapshots * @param fof Is this a snapshot related to a stand-alone FOF call? * @param mpi_rank The MPI rank of this node. * @param mpi_size The number of MPI ranks. * @param comm The MPI communicator. * @param info The MPI information object * * Creates an HDF5 output file and writes the particles contained * in the engine. If such a file already exists, it is erased and replaced * by the new one. * The companion XMF file is also updated accordingly. * * Calls #error() if an error occurs. * */ void write_output_serial(struct engine* e, const struct unit_system* internal_units, const struct unit_system* snapshot_units, const int fof, const int mpi_rank, const int mpi_size, MPI_Comm comm, MPI_Info info) { hid_t h_file = 0, h_grp = 0, h_props = 0; int numFiles = 1; const struct part* parts = e->s->parts; const struct xpart* xparts = e->s->xparts; const struct gpart* gparts = e->s->gparts; const struct spart* sparts = e->s->sparts; const struct bpart* bparts = e->s->bparts; const struct sink* sinks = e->s->sinks; struct output_options* output_options = e->output_options; struct output_list* output_list = e->output_list_snapshots; const int with_cosmology = e->policy & engine_policy_cosmology; const int with_cooling = e->policy & engine_policy_cooling; const int with_temperature = e->policy & engine_policy_temperature; const int with_fof = e->policy & engine_policy_fof; const int with_DM = e->s->with_DM; const int with_DM_background = e->s->with_DM_background; const int with_neutrinos = e->s->with_neutrinos; const int with_hydro = (e->policy & engine_policy_hydro) ? 1 : 0; const int with_stars = (e->policy & engine_policy_stars) ? 1 : 0; const int with_black_hole = (e->policy & engine_policy_black_holes) ? 1 : 0; const int with_sink = (e->policy & engine_policy_sinks) ? 1 : 0; #ifdef HAVE_VELOCIRAPTOR const int with_stf = (e->policy & engine_policy_structure_finding) && (e->s->gpart_group_data != NULL); #else const int with_stf = 0; #endif const int with_rt = e->policy & engine_policy_rt; FILE* xmfFile = 0; /* Number of particles currently in the arrays */ const size_t Ntot = e->s->nr_gparts; const size_t Ngas = e->s->nr_parts; const size_t Nsinks = e->s->nr_sinks; const size_t Nstars = e->s->nr_sparts; const size_t Nblackholes = e->s->nr_bparts; // const size_t Nbaryons = Ngas + Nstars; // const size_t Ndm = Ntot > 0 ? Ntot - Nbaryons : 0; /* Determine if we are writing a reduced snapshot, and if so which * output selection type to use. Can just create a copy of this on * each rank. */ char current_selection_name[FIELD_BUFFER_SIZE] = select_output_header_default_name; if (output_list) { /* Users could have specified a different Select Output scheme for each * snapshot. */ output_list_get_current_select_output(output_list, current_selection_name); } /* File name */ char fileName[FILENAME_BUFFER_SIZE]; char xmfFileName[FILENAME_BUFFER_SIZE]; char snapshot_subdir_name[FILENAME_BUFFER_SIZE]; char snapshot_base_name[FILENAME_BUFFER_SIZE]; output_options_get_basename(output_options, current_selection_name, e->snapshot_subdir, e->snapshot_base_name, snapshot_subdir_name, snapshot_base_name); io_get_snapshot_filename( fileName, xmfFileName, output_list, e->snapshot_invoke_stf, e->stf_output_count, e->snapshot_output_count, e->snapshot_subdir, snapshot_subdir_name, e->snapshot_base_name, snapshot_base_name); /* Create the directory */ if (mpi_rank == 0) safe_checkdir(snapshot_subdir_name, /*create=*/1); /* Do we want to sub-sample any of the arrays */ int subsample[swift_type_count]; float subsample_fraction[swift_type_count]; for (int i = 0; i < swift_type_count; ++i) { subsample[i] = 0; subsample_fraction[i] = 1.f; } output_options_get_subsampling( output_options, current_selection_name, e->snapshot_subsample, e->snapshot_subsample_fraction, subsample, subsample_fraction); /* Is any particle type being subsampled? */ int subsample_any = 0; for (int i = 0; i < swift_type_count; ++i) { subsample_any += subsample[i]; if (!subsample[i]) subsample_fraction[i] = 1.f; } /* Number of particles that we will write */ size_t Ngas_written, Ndm_written, Ndm_background, Ndm_neutrino, Nsinks_written, Nstars_written, Nblackholes_written; if (subsample[swift_type_gas]) { Ngas_written = io_count_gas_to_write(e->s, /*subsample=*/1, subsample_fraction[swift_type_gas], e->snapshot_output_count); } else { Ngas_written = e->s->nr_parts - e->s->nr_inhibited_parts - e->s->nr_extra_parts; } if (subsample[swift_type_stars]) { Nstars_written = io_count_stars_to_write( e->s, /*subsample=*/1, subsample_fraction[swift_type_stars], e->snapshot_output_count); } else { Nstars_written = e->s->nr_sparts - e->s->nr_inhibited_sparts - e->s->nr_extra_sparts; } if (subsample[swift_type_black_hole]) { Nblackholes_written = io_count_black_holes_to_write( e->s, /*subsample=*/1, subsample_fraction[swift_type_black_hole], e->snapshot_output_count); } else { Nblackholes_written = e->s->nr_bparts - e->s->nr_inhibited_bparts - e->s->nr_extra_bparts; } if (subsample[swift_type_sink]) { Nsinks_written = io_count_sinks_to_write( e->s, /*subsample=*/1, subsample_fraction[swift_type_sink], e->snapshot_output_count); } else { Nsinks_written = e->s->nr_sinks - e->s->nr_inhibited_sinks - e->s->nr_extra_sinks; } Ndm_written = io_count_dark_matter_to_write( e->s, subsample[swift_type_dark_matter], subsample_fraction[swift_type_dark_matter], e->snapshot_output_count); if (with_DM_background) { Ndm_background = io_count_background_dark_matter_to_write( e->s, subsample[swift_type_dark_matter_background], subsample_fraction[swift_type_dark_matter_background], e->snapshot_output_count); } else { Ndm_background = 0; } if (with_neutrinos) { Ndm_neutrino = io_count_neutrinos_to_write( e->s, subsample[swift_type_neutrino], subsample_fraction[swift_type_neutrino], e->snapshot_output_count); } else { Ndm_neutrino = 0; } /* Total number of fields to write per ptype */ int numFields[swift_type_count] = {0}; for (int ptype = 0; ptype < swift_type_count; ++ptype) { numFields[ptype] = output_options_get_num_fields_to_write( output_options, current_selection_name, ptype); } /* Compute offset in the file and total number of particles */ size_t N[swift_type_count] = { Ngas_written, Ndm_written, Ndm_background, Nsinks_written, Nstars_written, Nblackholes_written, Ndm_neutrino}; long long N_total[swift_type_count] = {0}; long long offset[swift_type_count] = {0}; MPI_Exscan(N, offset, swift_type_count, MPI_LONG_LONG_INT, MPI_SUM, comm); for (int ptype = 0; ptype < swift_type_count; ++ptype) N_total[ptype] = offset[ptype] + N[ptype]; /* The last rank now has the correct N_total. Let's broadcast from there */ MPI_Bcast(N_total, swift_type_count, MPI_LONG_LONG_INT, mpi_size - 1, comm); /* List what fields to write. * Note that we want to want to write a 0-size dataset for some species * in case future snapshots will contain them (e.g. star formation) */ const int to_write[swift_type_count] = { with_hydro, with_DM, with_DM_background, with_sink, with_stars, with_black_hole, with_neutrinos }; /* Now everybody knows its offset and the total number of particles of each * type */ /* Do common stuff first */ if (mpi_rank == 0) { /* First time, we need to create the XMF file */ if (e->snapshot_output_count == 0) xmf_create_file(xmfFileName); /* Prepare the XMF file for the new entry */ xmfFile = xmf_prepare_file(xmfFileName); /* Write the part corresponding to this specific output */ xmf_write_outputheader(xmfFile, fileName, e->time); /* Set the minimal API version to avoid issues with advanced features */ h_props = H5Pcreate(H5P_FILE_ACCESS); herr_t err = H5Pset_libver_bounds(h_props, HDF5_LOWEST_FILE_FORMAT_VERSION, HDF5_HIGHEST_FILE_FORMAT_VERSION); if (err < 0) error("Error setting the hdf5 API version"); /* Open file */ /* message("Opening file '%s'.", fileName); */ h_file = H5Fcreate(fileName, H5F_ACC_TRUNC, H5P_DEFAULT, h_props); if (h_file < 0) error("Error while opening file '%s'.", fileName); /* Open header to write simulation properties */ /* message("Writing file header..."); */ h_grp = H5Gcreate(h_file, "/Header", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating file header\n"); /* Convert basic output information to snapshot units */ const double factor_time = units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_TIME); const double factor_length = units_conversion_factor( internal_units, snapshot_units, UNIT_CONV_LENGTH); const double dblTime = e->time * factor_time; const double dim[3] = {e->s->dim[0] * factor_length, e->s->dim[1] * factor_length, e->s->dim[2] * factor_length}; /* Print the relevant information and print status */ io_write_attribute(h_grp, "BoxSize", DOUBLE, dim, 3); io_write_attribute(h_grp, "Time", DOUBLE, &dblTime, 1); const int dimension = (int)hydro_dimension; io_write_attribute(h_grp, "Dimension", INT, &dimension, 1); io_write_attribute(h_grp, "Redshift", DOUBLE, &e->cosmology->z, 1); io_write_attribute(h_grp, "Scale-factor", DOUBLE, &e->cosmology->a, 1); io_write_attribute_s(h_grp, "Code", "SWIFT"); io_write_attribute_s(h_grp, "RunName", e->run_name); io_write_attribute_s(h_grp, "System", hostname()); io_write_attribute(h_grp, "Shift", DOUBLE, e->s->initial_shift, 3); /* Write out the particle types */ io_write_part_type_names(h_grp); /* Write out the time-base */ if (with_cosmology) { io_write_attribute_d(h_grp, "TimeBase_dloga", e->time_base); const double delta_t = cosmology_get_timebase(e->cosmology, e->ti_current); io_write_attribute_d(h_grp, "TimeBase_dt", delta_t); } else { io_write_attribute_d(h_grp, "TimeBase_dloga", 0); io_write_attribute_d(h_grp, "TimeBase_dt", e->time_base); } /* Store the time at which the snapshot was written */ time_t tm = time(NULL); struct tm* timeinfo = localtime(&tm); char snapshot_date[64]; strftime(snapshot_date, 64, "%T %F %Z", timeinfo); io_write_attribute_s(h_grp, "SnapshotDate", snapshot_date); /* GADGET-2 legacy values: Number of particles of each type */ long long numParticlesThisFile[swift_type_count] = {0}; unsigned int numParticles[swift_type_count] = {0}; unsigned int numParticlesHighWord[swift_type_count] = {0}; for (int ptype = 0; ptype < swift_type_count; ++ptype) { numParticles[ptype] = (unsigned int)N_total[ptype]; numParticlesHighWord[ptype] = (unsigned int)(N_total[ptype] >> 32); if (numFields[ptype] == 0) { numParticlesThisFile[ptype] = 0; } else { numParticlesThisFile[ptype] = N_total[ptype]; } } io_write_attribute(h_grp, "NumPart_ThisFile", LONGLONG, numParticlesThisFile, swift_type_count); io_write_attribute(h_grp, "NumPart_Total", UINT, numParticles, swift_type_count); io_write_attribute(h_grp, "NumPart_Total_HighWord", UINT, numParticlesHighWord, swift_type_count); io_write_attribute(h_grp, "TotalNumberOfParticles", LONGLONG, N_total, swift_type_count); double MassTable[swift_type_count] = {0}; io_write_attribute(h_grp, "MassTable", DOUBLE, MassTable, swift_type_count); io_write_attribute(h_grp, "InitialMassTable", DOUBLE, e->s->initial_mean_mass_particles, swift_type_count); unsigned int flagEntropy[swift_type_count] = {0}; flagEntropy[0] = writeEntropyFlag(); io_write_attribute(h_grp, "Flag_Entropy_ICs", UINT, flagEntropy, swift_type_count); io_write_attribute(h_grp, "NumFilesPerSnapshot", INT, &numFiles, 1); io_write_attribute_i(h_grp, "ThisFile", 0); io_write_attribute_s(h_grp, "SelectOutput", current_selection_name); io_write_attribute_i(h_grp, "Virtual", 0); io_write_attribute(h_grp, "CanHaveTypes", INT, to_write, swift_type_count); if (subsample_any) { io_write_attribute_s(h_grp, "OutputType", "SubSampled"); io_write_attribute(h_grp, "SubSampleFractions", FLOAT, subsample_fraction, swift_type_count); } else { io_write_attribute_s(h_grp, "OutputType", "FullVolume"); } /* Close header */ H5Gclose(h_grp); /* Copy metadata from ICs to the file */ ic_info_write_hdf5(e->ics_metadata, h_file); /* Write all the meta-data */ io_write_meta_data(h_file, e, internal_units, snapshot_units, fof); /* Loop over all particle types */ for (int ptype = 0; ptype < swift_type_count; ptype++) { /* Don't do anything if there are * (a) no particles of this kind in this run, or * (b) if we have disabled every field of this particle type. */ if (!to_write[ptype] || numFields[ptype] == 0) continue; /* Open the particle group in the file */ char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d", ptype); h_grp = H5Gcreate(h_file, partTypeGroupName, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating particle group.\n"); /* Add an alias name for convenience */ char aliasName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(aliasName, PARTICLE_GROUP_BUFFER_SIZE, "/%sParticles", part_type_names[ptype]); hid_t h_err = H5Lcreate_soft(partTypeGroupName, h_grp, aliasName, H5P_DEFAULT, H5P_DEFAULT); if (h_err < 0) error("Error while creating alias for particle group.\n"); /* Write the number of particles as an attribute */ io_write_attribute_ll(h_grp, "NumberOfParticles", N_total[ptype]); io_write_attribute_ll(h_grp, "TotalNumberOfParticles", N_total[ptype]); /* Close particle group */ H5Gclose(h_grp); } /* Close file */ H5Fclose(h_file); H5Pclose(h_props); } /* Now write the top-level cell structure */ hid_t h_file_cells = 0, h_grp_cells = 0, h_props_cells = 0; if (mpi_rank == 0) { /* Set the minimal API version to avoid issues with advanced features */ h_props_cells = H5Pcreate(H5P_FILE_ACCESS); herr_t err = H5Pset_libver_bounds(h_props_cells, HDF5_LOWEST_FILE_FORMAT_VERSION, HDF5_HIGHEST_FILE_FORMAT_VERSION); if (err < 0) error("Error setting the hdf5 API version"); /* Open the snapshot on rank 0 */ h_file_cells = H5Fopen(fileName, H5F_ACC_RDWR, h_props_cells); if (h_file_cells < 0) error("Error while opening file '%s' on rank %d.", fileName, mpi_rank); /* Create the group we want in the file */ h_grp_cells = H5Gcreate(h_file_cells, "/Cells", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp_cells < 0) error("Error while creating cells group"); } /* Write the location of the particles in the arrays */ io_write_cell_offsets(h_grp_cells, e->s->cdim, e->s->dim, e->s->cells_top, e->s->nr_cells, e->s->width, mpi_rank, /*distributed=*/0, subsample, subsample_fraction, e->snapshot_output_count, N_total, offset, to_write, numFields, internal_units, snapshot_units); /* Close everything */ if (mpi_rank == 0) { H5Gclose(h_grp_cells); H5Fclose(h_file_cells); H5Pclose(h_props_cells); } /* Now loop over ranks and write the data */ for (int rank = 0; rank < mpi_size; ++rank) { /* Is it this rank's turn to write ? */ if (rank == mpi_rank) { /* Set the minimal API version to avoid issues with advanced features */ h_props = H5Pcreate(H5P_FILE_ACCESS); herr_t err = H5Pset_libver_bounds(h_props, HDF5_LOWEST_FILE_FORMAT_VERSION, HDF5_HIGHEST_FILE_FORMAT_VERSION); if (err < 0) error("Error setting the hdf5 API version"); h_file = H5Fopen(fileName, H5F_ACC_RDWR, h_props); if (h_file < 0) error("Error while opening file '%s' on rank %d.", fileName, mpi_rank); /* Loop over all particle types */ for (int ptype = 0; ptype < swift_type_count; ptype++) { /* Don't do anything if there are * (a) no particles of this kind in this run, or * (b) if we have disabled every field of this particle type. */ if (!to_write[ptype] || numFields[ptype] == 0) continue; /* Add the global information for that particle type to the XMF * meta-file */ if (mpi_rank == 0) xmf_write_groupheader(xmfFile, fileName, /*distributed=*/0, N_total[ptype], (enum part_type)ptype); /* Open the particle group in the file */ char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d", ptype); h_grp = H5Gopen(h_file, partTypeGroupName, H5P_DEFAULT); if (h_grp < 0) error("Error while opening particle group %s.", partTypeGroupName); int num_fields = 0; struct io_props list[io_max_size_output_list]; bzero(list, io_max_size_output_list * sizeof(struct io_props)); size_t Nparticles = 0; struct part* parts_written = NULL; struct xpart* xparts_written = NULL; struct gpart* gparts_written = NULL; struct velociraptor_gpart_data* gpart_group_data_written = NULL; struct spart* sparts_written = NULL; struct bpart* bparts_written = NULL; struct sink* sinks_written = NULL; /* Write particle fields from the particle structure */ switch (ptype) { case swift_type_gas: { if (Ngas == Ngas_written) { /* No inhibted particles: easy case */ Nparticles = Ngas; /* Select the fields to write */ io_select_hydro_fields(parts, xparts, with_cosmology, with_cooling, with_temperature, with_fof, with_stf, with_rt, e, &num_fields, list); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Ngas_written; /* Allocate temporary arrays */ if (swift_memalign("parts_written", (void**)&parts_written, part_align, Ngas_written * sizeof(struct part)) != 0) error("Error while allocating temporary memory for parts"); if (swift_memalign("xparts_written", (void**)&xparts_written, xpart_align, Ngas_written * sizeof(struct xpart)) != 0) error("Error while allocating temporary memory for xparts"); /* Collect the particles we want to write */ io_collect_parts_to_write( parts, xparts, parts_written, xparts_written, subsample[swift_type_gas], subsample_fraction[swift_type_gas], e->snapshot_output_count, Ngas, Ngas_written); /* Select the fields to write */ io_select_hydro_fields(parts_written, xparts_written, with_cosmology, with_cooling, with_temperature, with_fof, with_stf, with_rt, e, &num_fields, list); } } break; case swift_type_dark_matter: { if (Ntot == Ndm_written) { /* This is a DM-only run without background or inhibited particles * or neutrinos */ Nparticles = Ntot; /* Select the fields to write */ io_select_dm_fields(gparts, e->s->gpart_group_data, with_fof, with_stf, e, &num_fields, list); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Ndm_written; /* Allocate temporary array */ if (swift_memalign("gparts_written", (void**)&gparts_written, gpart_align, Ndm_written * sizeof(struct gpart)) != 0) error("Error while allocating temporary memory for gparts"); if (with_stf) { if (swift_memalign( "gpart_group_written", (void**)&gpart_group_data_written, gpart_align, Ndm_written * sizeof(struct velociraptor_gpart_data)) != 0) error( "Error while allocating temporary memory for gparts STF " "data"); } /* Collect the non-inhibited DM particles from gpart */ io_collect_gparts_to_write( gparts, e->s->gpart_group_data, gparts_written, gpart_group_data_written, subsample[swift_type_dark_matter], subsample_fraction[swift_type_dark_matter], e->snapshot_output_count, Ntot, Ndm_written, with_stf); /* Select the fields to write */ io_select_dm_fields(gparts_written, gpart_group_data_written, with_fof, with_stf, e, &num_fields, list); } } break; case swift_type_dark_matter_background: { /* Ok, we need to fish out the particles we want */ Nparticles = Ndm_background; /* Allocate temporary array */ if (swift_memalign("gparts_written", (void**)&gparts_written, gpart_align, Ndm_background * sizeof(struct gpart)) != 0) error("Error while allocating temporart memory for gparts"); if (with_stf) { if (swift_memalign("gpart_group_written", (void**)&gpart_group_data_written, gpart_align, Ndm_background * sizeof(struct velociraptor_gpart_data)) != 0) error( "Error while allocating temporart memory for gparts STF " "data"); } /* Collect the non-inhibited DM particles from gpart */ io_collect_gparts_background_to_write( gparts, e->s->gpart_group_data, gparts_written, gpart_group_data_written, subsample[swift_type_dark_matter_background], subsample_fraction[swift_type_dark_matter_background], e->snapshot_output_count, Ntot, Ndm_background, with_stf); /* Select the fields to write */ io_select_dm_fields(gparts_written, gpart_group_data_written, with_fof, with_stf, e, &num_fields, list); } break; case swift_type_neutrino: { /* Ok, we need to fish out the particles we want */ Nparticles = Ndm_neutrino; /* Allocate temporary array */ if (swift_memalign("gparts_written", (void**)&gparts_written, gpart_align, Ndm_neutrino * sizeof(struct gpart)) != 0) error("Error while allocating temporart memory for gparts"); if (with_stf) { if (swift_memalign( "gpart_group_written", (void**)&gpart_group_data_written, gpart_align, Ndm_neutrino * sizeof(struct velociraptor_gpart_data)) != 0) error( "Error while allocating temporart memory for gparts STF " "data"); } /* Collect the non-inhibited DM particles from gpart */ io_collect_gparts_neutrino_to_write( gparts, e->s->gpart_group_data, gparts_written, gpart_group_data_written, subsample[swift_type_neutrino], subsample_fraction[swift_type_neutrino], e->snapshot_output_count, Ntot, Ndm_neutrino, with_stf); /* Select the fields to write */ io_select_neutrino_fields(gparts_written, gpart_group_data_written, with_fof, with_stf, e, &num_fields, list); } break; case swift_type_sink: { if (Nsinks == Nsinks_written) { /* No inhibted particles: easy case */ Nparticles = Nsinks; /* Select the fields to write */ io_select_sink_fields(sinks, with_cosmology, with_fof, with_stf, e, &num_fields, list); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nsinks_written; /* Allocate temporary arrays */ if (swift_memalign("sinks_written", (void**)&sinks_written, sink_align, Nsinks_written * sizeof(struct sink)) != 0) error("Error while allocating temporary memory for sinks"); /* Collect the particles we want to write */ io_collect_sinks_to_write( sinks, sinks_written, subsample[swift_type_sink], subsample_fraction[swift_type_sink], e->snapshot_output_count, Nsinks, Nsinks_written); /* Select the fields to write */ io_select_sink_fields(sinks_written, with_cosmology, with_fof, with_stf, e, &num_fields, list); } } break; case swift_type_stars: { if (Nstars == Nstars_written) { /* No inhibted particles: easy case */ Nparticles = Nstars; /* Select the fields to write */ io_select_star_fields(sparts, with_cosmology, with_fof, with_stf, with_rt, e, &num_fields, list); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nstars_written; /* Allocate temporary arrays */ if (swift_memalign("sparts_written", (void**)&sparts_written, spart_align, Nstars_written * sizeof(struct spart)) != 0) error("Error while allocating temporary memory for sparts"); /* Collect the particles we want to write */ io_collect_sparts_to_write( sparts, sparts_written, subsample[swift_type_stars], subsample_fraction[swift_type_stars], e->snapshot_output_count, Nstars, Nstars_written); /* Select the fields to write */ io_select_star_fields(sparts_written, with_cosmology, with_fof, with_stf, with_rt, e, &num_fields, list); } } break; case swift_type_black_hole: { if (Nblackholes == Nblackholes_written) { /* No inhibted particles: easy case */ Nparticles = Nblackholes; /* Select the fields to write */ io_select_bh_fields(bparts, with_cosmology, with_fof, with_stf, e, &num_fields, list); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nblackholes_written; /* Allocate temporary arrays */ if (swift_memalign( "bparts_written", (void**)&bparts_written, bpart_align, Nblackholes_written * sizeof(struct bpart)) != 0) error("Error while allocating temporary memory for bparts"); /* Collect the particles we want to write */ io_collect_bparts_to_write( bparts, bparts_written, subsample[swift_type_black_hole], subsample_fraction[swift_type_black_hole], e->snapshot_output_count, Nblackholes, Nblackholes_written); /* Select the fields to write */ io_select_bh_fields(bparts_written, with_cosmology, with_fof, with_stf, e, &num_fields, list); } } break; default: error("Particle Type %d not yet supported. Aborting", ptype); } /* Verify we are not going to crash when writing below */ if (num_fields >= io_max_size_output_list) error("Too many fields to write for particle type %d", ptype); for (int i = 0; i < num_fields; ++i) { if (!list[i].is_used) error("List of field contains an empty entry!"); if (!list[i].dimension) error("Dimension of field '%s' is <= 1!", list[i].name); } /* Did the user specify a non-standard default for the entire particle * type? */ const enum lossy_compression_schemes compression_level_current_default = output_options_get_ptype_default_compression( output_options->select_output, current_selection_name, (enum part_type)ptype, e->verbose); /* Write everything that is not cancelled */ int num_fields_written = 0; for (int i = 0; i < num_fields; ++i) { /* Did the user cancel this field? */ const enum lossy_compression_schemes compression_level = output_options_get_field_compression( output_options, current_selection_name, list[i].name, (enum part_type)ptype, compression_level_current_default, e->verbose); if (compression_level != compression_do_not_write) { write_array_serial(e, h_grp, fileName, xmfFile, partTypeGroupName, list[i], Nparticles, N_total[ptype], mpi_rank, offset[ptype], compression_level, internal_units, snapshot_units); num_fields_written++; } } if (mpi_rank == 0) { /* Only write this now that we know exactly how many fields there are. */ io_write_attribute_i(h_grp, "NumberOfFields", num_fields_written); } /* Free temporary array */ if (parts_written) swift_free("parts_written", parts_written); if (xparts_written) swift_free("xparts_written", xparts_written); if (gparts_written) swift_free("gparts_written", gparts_written); if (gpart_group_data_written) swift_free("gpart_group_written", gpart_group_data_written); if (sparts_written) swift_free("sparts_written", sparts_written); if (bparts_written) swift_free("bparts_written", sparts_written); if (sinks_written) swift_free("sinks_written", sinks_written); /* Close particle group */ H5Gclose(h_grp); /* Close this particle group in the XMF file as well */ if (mpi_rank == 0) xmf_write_groupfooter(xmfFile, (enum part_type)ptype); } /* Close file */ H5Fclose(h_file); H5Pclose(h_props); } /* Wait for the read of the reading to complete */ MPI_Barrier(comm); } /* Write footer of LXMF file descriptor */ if (mpi_rank == 0) xmf_write_outputfooter(xmfFile, e->snapshot_output_count, e->time); /* message("Done writing particles..."); */ e->snapshot_output_count++; if (e->snapshot_invoke_stf) e->stf_output_count++; } #endif /* HAVE_HDF5 && HAVE_MPI */