/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 Matthieu Schaller (schaller@strw.leidenuniv.nl)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
/* This object's header. */
#include "hydro_properties.h"
/* Standard headers */
#include
#include
/* Local headers. */
#include "adiabatic_index.h"
#include "common_io.h"
#include "dimension.h"
#include "equation_of_state.h"
#include "error.h"
#include "gravity_properties.h"
#include "hydro.h"
#include "kernel_hydro.h"
#include "mhd.h"
#include "parser.h"
#include "pressure_floor.h"
#include "units.h"
#define hydro_props_default_max_iterations 30
#define hydro_props_default_volume_change 1.4f
#define hydro_props_default_h_max FLT_MAX
#define hydro_props_default_h_min_ratio 0.f
#define hydro_props_default_h_tolerance 1e-4
#define hydro_props_default_init_temp 0.f
#define hydro_props_default_min_temp 0.f
#define hydro_props_default_H_ionization_temperature 1e4
/**
* @brief Initialize the global properties of the hydro scheme.
*
* @param p The #hydro_props.
* @param phys_const The physical constants in the internal unit system.
* @param us The internal unit system.
* @param params The parsed parameters.
*/
void hydro_props_init(struct hydro_props *p,
const struct phys_const *phys_const,
const struct unit_system *us,
struct swift_params *params) {
/* ------ Smoothing lengths parameters ---------- */
/* Kernel properties */
p->eta_neighbours = parser_get_param_float(params, "SPH:resolution_eta");
/* Tolerance for the smoothing length Newton-Raphson scheme */
p->h_tolerance = parser_get_opt_param_float(params, "SPH:h_tolerance",
hydro_props_default_h_tolerance);
/* Get derived properties */
p->target_neighbours = pow_dimension(p->eta_neighbours) * kernel_norm;
const float delta_eta = p->eta_neighbours * (1.f + p->h_tolerance);
p->delta_neighbours =
(pow_dimension(delta_eta) - pow_dimension(p->eta_neighbours)) *
kernel_norm;
#ifdef SHADOWFAX_SPH
/* change the meaning of target_neighbours and delta_neighbours */
p->target_neighbours = 1.0f;
p->delta_neighbours = 0.0f;
p->eta_neighbours = 1.0f;
#endif
/* Maximal smoothing length */
p->h_max = parser_get_opt_param_float(params, "SPH:h_max",
hydro_props_default_h_max);
/* Minimal smoothing length ratio to softening */
p->h_min_ratio = parser_get_opt_param_float(params, "SPH:h_min_ratio",
hydro_props_default_h_min_ratio);
/* Temporarily set the minimal softening to 0. */
p->h_min = 0.f;
/* Number of iterations to converge h */
p->max_smoothing_iterations = parser_get_opt_param_int(
params, "SPH:max_ghost_iterations", hydro_props_default_max_iterations);
if (p->max_smoothing_iterations <= 10)
error("The number of smoothing length iterations should be > 10");
/* ------ Neighbour number definition ------------ */
/* Non-conventional neighbour number definition */
p->use_mass_weighted_num_ngb =
parser_get_opt_param_int(params, "SPH:use_mass_weighted_num_ngb", 0);
if (p->use_mass_weighted_num_ngb) {
#if defined(GIZMO_MFV_SPH) || defined(GIZMO_MFM_SPH) || defined(SHADOWFAX_SPH)
error("Can't use alternative neighbour definition with this scheme!");
#endif
}
/* ------ Time integration parameters ------------ */
/* Time integration properties */
p->CFL_condition = parser_get_param_float(params, "SPH:CFL_condition");
const float max_volume_change = parser_get_opt_param_float(
params, "SPH:max_volume_change", hydro_props_default_volume_change);
p->log_max_h_change = logf(powf(max_volume_change, hydro_dimension_inv));
/* Initial temperature */
p->initial_temperature = parser_get_opt_param_float(
params, "SPH:initial_temperature", hydro_props_default_init_temp);
if (p->initial_temperature < 0.f)
error("ERROR: Initial temperature set to a negative value!!!");
/* ------ Temperature parameters ----------------- */
/* Minimal temperature */
p->minimal_temperature = parser_get_opt_param_float(
params, "SPH:minimal_temperature", hydro_props_default_min_temp);
if (p->minimal_temperature < 0.f)
error("ERROR: Minimal temperature set to a negative value!!!");
if ((p->initial_temperature != 0.) &&
(p->initial_temperature < p->minimal_temperature))
error("Initial temperature lower than minimal allowed temperature!");
/* Neutral to ionized Hydrogen transition temperature */
p->hydrogen_ionization_temperature =
parser_get_opt_param_double(params, "SPH:H_ionization_temperature",
hydro_props_default_H_ionization_temperature);
/* Hydrogen mass fraction */
const float default_H_fraction =
1. - phys_const->const_primordial_He_fraction;
p->hydrogen_mass_fraction = parser_get_opt_param_double(
params, "SPH:H_mass_fraction", default_H_fraction);
/* Mean molecular mass for neutral gas */
p->mu_neutral = 4. / (1. + 3. * p->hydrogen_mass_fraction);
/* Mean molecular mass for fully ionised gas */
p->mu_ionised = 4. / (8. - 5. * (1. - p->hydrogen_mass_fraction));
/* Initialise the implementation-dependent viscosity parameters
* (see hydro/SCHEME/hydro_parameters.h for this implementation) */
viscosity_init(params, us, phys_const, &(p->viscosity));
/* Same for the thermal diffusion parameters */
diffusion_init(params, us, phys_const, &(p->diffusion));
/* Compute the initial energy (Note the temp. read is in internal units)
*/
/* u_init = k_B T_init / (mu m_p (gamma - 1)) */
double u_init = phys_const->const_boltzmann_k / phys_const->const_proton_mass;
u_init *= p->initial_temperature;
u_init *= hydro_one_over_gamma_minus_one;
/* Correct for hydrogen mass fraction (mu) */
double mean_molecular_weight;
if (p->initial_temperature > p->hydrogen_ionization_temperature)
mean_molecular_weight = 4. / (8. - 5. * (1. - p->hydrogen_mass_fraction));
else
mean_molecular_weight = 4. / (1. + 3. * p->hydrogen_mass_fraction);
p->initial_internal_energy = u_init / mean_molecular_weight;
/* Compute the minimal energy (Note the temp. read is in internal units) */
/* u_min = k_B T_min / (mu m_p (gamma - 1)) */
double u_min = phys_const->const_boltzmann_k / phys_const->const_proton_mass;
u_min *= p->minimal_temperature;
u_min *= hydro_one_over_gamma_minus_one;
/* Correct for hydrogen mass fraction (mu) */
if (p->minimal_temperature > p->hydrogen_ionization_temperature)
mean_molecular_weight = 4. / (8. - 5. * (1. - p->hydrogen_mass_fraction));
else
mean_molecular_weight = 4. / (1. + 3. * p->hydrogen_mass_fraction);
p->minimal_internal_energy = u_min / mean_molecular_weight;
/* ------ Particle splitting parameters ---------- */
/* Are we doing particle splitting? */
p->particle_splitting =
parser_get_opt_param_int(params, "SPH:particle_splitting", 0);
if (p->particle_splitting) {
p->particle_splitting_mass_threshold =
parser_get_param_float(params, "SPH:particle_splitting_mass_threshold");
p->generate_random_ids = parser_get_opt_param_int(
params, "SPH:particle_splitting_generate_random_ids", 0);
p->log_extra_splits_in_file = parser_get_opt_param_int(
params, "SPH:particle_splitting_log_extra_splits", 0);
}
}
/**
* @brief Print the global properties of the hydro scheme.
*
* @param p The #hydro_props.
*/
void hydro_props_print(const struct hydro_props *p) {
/* Print equation of state first */
eos_print(&eos);
/* Now SPH */
message("Hydrodynamic scheme: %s in %dD.", SPH_IMPLEMENTATION,
(int)hydro_dimension);
message("Hydrodynamic kernel: %s with eta=%f (%.2f neighbours).", kernel_name,
p->eta_neighbours, p->target_neighbours);
message("Hydrodynamic relative tolerance in h: %.5f (+/- %.4f neighbours).",
p->h_tolerance, p->delta_neighbours);
message("Hydrodynamic integration: CFL parameter: %.4f.", p->CFL_condition);
message(
"Hydrodynamic integration: Max change of volume: %.2f "
"(max|dlog(h)/dt|=%f).",
pow_dimension(expf(p->log_max_h_change)), p->log_max_h_change);
if (p->use_mass_weighted_num_ngb)
message("Neighbour number definition: Mass-weighted.");
else
message("Neighbour number definition: Unweighted.");
if (p->h_max != hydro_props_default_h_max)
message("Maximal smoothing length allowed: %.4f", p->h_max);
message("Maximal time-bin difference between neighbours: %d",
time_bin_neighbour_max_delta_bin);
if (p->max_smoothing_iterations != hydro_props_default_max_iterations)
message("Maximal iterations in ghost task set to %d (default is %d)",
p->max_smoothing_iterations, hydro_props_default_max_iterations);
if (p->initial_temperature != hydro_props_default_init_temp)
message("Initial gas temperature set to %f", p->initial_temperature);
if (p->minimal_temperature != hydro_props_default_min_temp)
message("Minimal gas temperature set to %f", p->minimal_temperature);
if (p->particle_splitting)
message("Splitting particles with mass > %e U_M",
p->particle_splitting_mass_threshold);
else
message("No particle splitting");
/* Print out the implementation-dependent viscosity parameters
* (see hydro/SCHEME/hydro_parameters.h for this implementation) */
viscosity_print(&(p->viscosity));
/* Same for the diffusion */
diffusion_print(&(p->diffusion));
/* Same for MHD */
message("MHD scheme: %s.", MHD_IMPLEMENTATION);
// MATTHIEU: Temporary location for this planetary SPH i/o business.
#ifdef PLANETARY_SPH
#ifdef PLANETARY_SPH_NO_BALSARA
message("Planetary SPH: Balsara switch DISABLED");
#else
message("Planetary SPH: Balsara switch ENABLED");
#endif
#endif
}
#if defined(HAVE_HDF5)
void hydro_props_print_snapshot(hid_t h_grpsph, const struct hydro_props *p) {
eos_print_snapshot(h_grpsph, &eos);
pressure_floor_print_snapshot(h_grpsph);
io_write_attribute_i(h_grpsph, "Dimension", (int)hydro_dimension);
if (p->use_mass_weighted_num_ngb) {
io_write_attribute_s(h_grpsph, "Neighbour number definition",
"mass-weighted");
} else {
io_write_attribute_s(h_grpsph, "Neighbour number definition", "unweighted");
}
io_write_attribute_s(h_grpsph, "Scheme", SPH_IMPLEMENTATION);
io_write_attribute_s(h_grpsph, "MHD Scheme", MHD_IMPLEMENTATION);
io_write_attribute_s(h_grpsph, "Kernel function", kernel_name);
io_write_attribute_f(h_grpsph, "Kernel target N_ngb", p->target_neighbours);
io_write_attribute_f(h_grpsph, "Kernel delta N_ngb", p->delta_neighbours);
io_write_attribute_f(h_grpsph, "Kernel eta", p->eta_neighbours);
io_write_attribute_f(h_grpsph, "Kernel gamma", kernel_gamma);
io_write_attribute_f(h_grpsph, "Smoothing length tolerance", p->h_tolerance);
io_write_attribute_f(h_grpsph, "Maximal smoothing length [internal units]",
p->h_max);
io_write_attribute_f(h_grpsph, "CFL parameter", p->CFL_condition);
io_write_attribute_f(h_grpsph, "Volume log(max(delta h))",
p->log_max_h_change);
io_write_attribute_f(h_grpsph, "Volume max change time-step",
pow_dimension(expf(p->log_max_h_change)));
io_write_attribute_i(h_grpsph, "Max ghost iterations",
p->max_smoothing_iterations);
io_write_attribute_f(h_grpsph, "Minimal temperature", p->minimal_temperature);
io_write_attribute_f(h_grpsph,
"Minimal energy per unit mass [internal units]",
p->minimal_internal_energy);
io_write_attribute_f(h_grpsph, "Initial temperature", p->initial_temperature);
io_write_attribute_f(h_grpsph,
"Initial energy per unit mass [internal units]",
p->initial_internal_energy);
io_write_attribute_f(h_grpsph, "Hydrogen mass fraction",
p->hydrogen_mass_fraction);
io_write_attribute_f(h_grpsph, "Hydrogen ionization transition temperature",
p->hydrogen_ionization_temperature);
io_write_attribute_i(h_grpsph,
"Maximal time-bin difference between neighbours",
time_bin_neighbour_max_delta_bin);
/* Write out the implementation-dependent viscosity parameters
* (see hydro/SCHEME/hydro_parameters.h for this implementation) */
viscosity_print_snapshot(h_grpsph, &(p->viscosity));
/* Same for the diffusion */
diffusion_print_snapshot(h_grpsph, &(p->diffusion));
}
#endif
/**
* @brief Initialises a hydro_props struct with somewhat useful values for
* the automated test suite. This is not intended for production use,
* but rather to fill for the purposes of mocking.
*
* @param p the struct
*/
void hydro_props_init_no_hydro(struct hydro_props *p) {
p->eta_neighbours = 1.2348;
p->h_tolerance = hydro_props_default_h_tolerance;
p->target_neighbours = pow_dimension(p->eta_neighbours) * kernel_norm;
const float delta_eta = p->eta_neighbours * (1.f + p->h_tolerance);
p->delta_neighbours =
(pow_dimension(delta_eta) - pow_dimension(p->eta_neighbours)) *
kernel_norm;
p->h_max = hydro_props_default_h_max;
p->h_min = 0.f;
p->h_min_ratio = hydro_props_default_h_min_ratio;
p->max_smoothing_iterations = hydro_props_default_max_iterations;
p->CFL_condition = 0.1;
p->log_max_h_change = logf(powf(1.4, hydro_dimension_inv));
/* These values are inconsistent and in a production run would probably lead
to a crash. Again, this function is intended for mocking use in unit tests
and is _not_ to be used otherwise! */
p->minimal_temperature = hydro_props_default_min_temp;
p->minimal_internal_energy = 0.f;
p->initial_temperature = hydro_props_default_init_temp;
p->initial_internal_energy = 0.f;
p->hydrogen_mass_fraction = 0.755;
p->hydrogen_ionization_temperature =
hydro_props_default_H_ionization_temperature;
/* Initialise the implementation-dependent viscosity parameters
* (see hydro/SCHEME/hydro_parameters.h for this implementation) */
viscosity_init_no_hydro(&(p->viscosity));
/* Same for the diffusion */
diffusion_init_no_hydro(&(p->diffusion));
}
/**
* @brief Update the global properties of the hydro scheme for that time-step.
*
* @param p The properties to update.
* @param gp The properties of the gravity scheme.
* @param cosmo The cosmological model.
*/
void hydro_props_update(struct hydro_props *p, const struct gravity_props *gp,
const struct cosmology *cosmo) {
/* Update the minimal allowed smoothing length
*
* We follow Gadget here and demand that the kernel support (h * gamma)
* is a fixed fraction of the radius at which the softened forces
* recover a Newtonian behaviour (i.e. 2.8 * Plummer equivalent softening
* in the case of a cubic spline kernel). */
p->h_min = p->h_min_ratio * gp->epsilon_baryon_cur / kernel_gamma;
}
/**
* @brief Write a hydro_props struct to the given FILE as a stream of bytes.
*
* @param p the struct
* @param stream the file stream
*/
void hydro_props_struct_dump(const struct hydro_props *p, FILE *stream) {
restart_write_blocks((void *)p, sizeof(struct hydro_props), 1, stream,
"hydroprops", "hydro props");
}
/**
* @brief Restore a hydro_props struct from the given FILE as a stream of
* bytes.
*
* @param p the struct
* @param stream the file stream
*/
void hydro_props_struct_restore(const struct hydro_props *p, FILE *stream) {
restart_read_blocks((void *)p, sizeof(struct hydro_props), 1, stream, NULL,
"hydro props");
}