/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2019 Matthieu Schaller (schaller@strw.leidenuniv.nl) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Config parameters. */ #include #if defined(HAVE_HDF5) && defined(WITH_MPI) /* Some standard headers. */ #include #include #include #include #include #include #include #include /* This object's header. */ #include "distributed_io.h" /* Local includes. */ #include "black_holes_io.h" #include "chemistry_io.h" #include "common_io.h" #include "dimension.h" #include "engine.h" #include "error.h" #include "gravity_io.h" #include "gravity_properties.h" #include "hydro_io.h" #include "hydro_properties.h" #include "io_compression.h" #include "io_properties.h" #include "memuse.h" #include "output_list.h" #include "output_options.h" #include "part.h" #include "part_type.h" #include "sink_io.h" #include "star_formation_io.h" #include "stars_io.h" #include "tools.h" #include "units.h" #include "version.h" #include "xmf.h" /* Are we timing the i/o? */ // #define IO_SPEED_MEASUREMENT /* Max number of entries that can be written for a given particle type */ static const int io_max_size_output_list = 100; /** * @brief Writes a data array in given HDF5 group. * * @param e The #engine we are writing from. * @param grp The group in which to write. * @param fileName The name of the file in which the data is written * @param partTypeGroupName The name of the group containing the particles in * the HDF5 file. * @param props The #io_props of the field to read * @param N The number of particles to write. * @param lossy_compression Level of lossy compression to use for this field. * @param internal_units The #unit_system used internally * @param snapshot_units The #unit_system used in the snapshots * * @todo A better version using HDF5 hyper-slabs to write the file directly from * the part array will be written once the structures have been stabilized. */ void write_distributed_array( const struct engine* e, hid_t grp, const char* fileName, const char* partTypeGroupName, const struct io_props props, const size_t N, const enum lossy_compression_schemes lossy_compression, const struct unit_system* internal_units, const struct unit_system* snapshot_units) { #ifdef IO_SPEED_MEASUREMENT const ticks tic_total = getticks(); #endif const size_t typeSize = io_sizeof_type(props.type); const size_t num_elements = N * props.dimension; /* message("Writing '%s' array...", props.name); */ /* Allocate temporary buffer */ void* temp = NULL; if (swift_memalign("writebuff", (void**)&temp, IO_BUFFER_ALIGNMENT, num_elements * typeSize) != 0) error("Unable to allocate temporary i/o buffer"); #ifdef IO_SPEED_MEASUREMENT ticks tic = getticks(); #endif /* Copy the particle data to the temporary buffer */ io_copy_temp_buffer(temp, e, props, N, internal_units, snapshot_units); #ifdef IO_SPEED_MEASUREMENT if (engine_rank == IO_SPEED_MEASUREMENT || IO_SPEED_MEASUREMENT == -1) message("Copying for '%s' took %.3f %s.", props.name, clocks_from_ticks(getticks() - tic), clocks_getunit()); #endif /* Create data space */ hid_t h_space; if (N > 0) h_space = H5Screate(H5S_SIMPLE); else h_space = H5Screate(H5S_NULL); if (h_space < 0) error("Error while creating data space for field '%s'.", props.name); /* Decide what chunk size to use based on compression */ int log2_chunk_size = 20; int rank; hsize_t shape[2]; hsize_t chunk_shape[2]; if (props.dimension > 1) { rank = 2; shape[0] = N; shape[1] = props.dimension; chunk_shape[0] = 1 << log2_chunk_size; chunk_shape[1] = props.dimension; } else { rank = 1; shape[0] = N; shape[1] = 0; chunk_shape[0] = 1 << log2_chunk_size; chunk_shape[1] = 0; } /* Make sure the chunks are not larger than the dataset */ if (chunk_shape[0] > N) chunk_shape[0] = N; /* Change shape of data space */ hid_t h_err = H5Sset_extent_simple(h_space, rank, shape, shape); if (h_err < 0) error("Error while changing data space shape for field '%s'.", props.name); /* Dataset type */ hid_t h_type = H5Tcopy(io_hdf5_type(props.type)); /* Dataset properties */ hid_t h_prop = H5Pcreate(H5P_DATASET_CREATE); /* Create filters and set compression level if we have something to write */ char comp_buffer[32] = "None"; if (N > 0) { /* Set chunk size */ h_err = H5Pset_chunk(h_prop, rank, chunk_shape); if (h_err < 0) error("Error while setting chunk size (%llu, %llu) for field '%s'.", (unsigned long long)chunk_shape[0], (unsigned long long)chunk_shape[1], props.name); /* Are we imposing some form of lossy compression filter? */ if (lossy_compression != compression_write_lossless) set_hdf5_lossy_compression(&h_prop, &h_type, lossy_compression, props.name, comp_buffer); /* Impose GZIP data compression */ if (e->snapshot_compression > 0) { h_err = H5Pset_shuffle(h_prop); if (h_err < 0) error("Error while setting shuffling options for field '%s'.", props.name); h_err = H5Pset_deflate(h_prop, e->snapshot_compression); if (h_err < 0) error("Error while setting compression options for field '%s'.", props.name); } /* Impose check-sum to verify data corruption */ h_err = H5Pset_fletcher32(h_prop); if (h_err < 0) error("Error while setting checksum options for field '%s'.", props.name); } /* Create dataset */ const hid_t h_data = H5Dcreate(grp, props.name, h_type, h_space, H5P_DEFAULT, h_prop, H5P_DEFAULT); if (h_data < 0) error("Error while creating dataspace '%s'.", props.name); #ifdef IO_SPEED_MEASUREMENT tic = getticks(); #endif /* Write temporary buffer to HDF5 dataspace */ h_err = H5Dwrite(h_data, io_hdf5_type(props.type), h_space, H5S_ALL, H5P_DEFAULT, temp); if (h_err < 0) error("Error while writing data array '%s'.", props.name); #ifdef IO_SPEED_MEASUREMENT ticks toc = getticks(); float ms = clocks_from_ticks(toc - tic); int megaBytes = N * props.dimension * typeSize / (1024 * 1024); if (engine_rank == IO_SPEED_MEASUREMENT || IO_SPEED_MEASUREMENT == -1) message( "H5Dwrite for '%s' (%d MB) on rank %d took %.3f %s (speed = %f MB/s).", props.name, megaBytes, engine_rank, ms, clocks_getunit(), megaBytes / (ms / 1000.)); #endif /* Write unit conversion factors for this data set */ char buffer[FIELD_BUFFER_SIZE] = {0}; units_cgs_conversion_string(buffer, snapshot_units, props.units, props.scale_factor_exponent); float baseUnitsExp[5]; units_get_base_unit_exponents_array(baseUnitsExp, props.units); io_write_attribute_f(h_data, "U_M exponent", baseUnitsExp[UNIT_MASS]); io_write_attribute_f(h_data, "U_L exponent", baseUnitsExp[UNIT_LENGTH]); io_write_attribute_f(h_data, "U_t exponent", baseUnitsExp[UNIT_TIME]); io_write_attribute_f(h_data, "U_I exponent", baseUnitsExp[UNIT_CURRENT]); io_write_attribute_f(h_data, "U_T exponent", baseUnitsExp[UNIT_TEMPERATURE]); io_write_attribute_f(h_data, "h-scale exponent", 0.f); io_write_attribute_f(h_data, "a-scale exponent", props.scale_factor_exponent); io_write_attribute_s(h_data, "Expression for physical CGS units", buffer); io_write_attribute_s(h_data, "Lossy compression filter", comp_buffer); io_write_attribute_b(h_data, "Value stored as physical", props.is_physical); io_write_attribute_b(h_data, "Property can be converted to comoving", props.is_convertible_to_comoving); /* Write the actual number this conversion factor corresponds to */ const double factor = units_cgs_conversion_factor(snapshot_units, props.units); io_write_attribute_d( h_data, "Conversion factor to CGS (not including cosmological corrections)", factor); io_write_attribute_d( h_data, "Conversion factor to physical CGS (including cosmological corrections)", factor * pow(e->cosmology->a, props.scale_factor_exponent)); #ifdef SWIFT_DEBUG_CHECKS if (strlen(props.description) == 0) error("Invalid (empty) description of the field '%s'", props.name); #endif /* Write the full description */ io_write_attribute_s(h_data, "Description", props.description); /* Free and close everything */ swift_free("writebuff", temp); H5Tclose(h_type); H5Pclose(h_prop); H5Dclose(h_data); H5Sclose(h_space); #ifdef IO_SPEED_MEASUREMENT if (engine_rank == IO_SPEED_MEASUREMENT || IO_SPEED_MEASUREMENT == -1) message("'%s' took %.3f %s.", props.name, clocks_from_ticks(getticks() - tic), clocks_getunit()); #endif } /** * @brief Prepares an array in the snapshot. * * @param e The #engine we are writing from. * @param grp The HDF5 grp to write to. * @param fileName The name of the file we are writing to. * @param xmfFile The (opened) XMF file we are appending to. * @param partTypeGroupName The name of the group we are writing to. * @param props The #io_props of the field to write. * @param N_total The total number of particles to write in this array. * @param snapshot_units The units used for the data in this snapshot. */ void write_array_virtual(struct engine* e, hid_t grp, const char* fileName_base, FILE* xmfFile, char* partTypeGroupName, struct io_props props, long long N_total, const long long* N_counts, const int num_ranks, const int ptype, const enum lossy_compression_schemes lossy_compression, const struct unit_system* snapshot_units) { #if H5_VERSION_GE(1, 10, 0) /* Create data space */ const hid_t h_space = H5Screate(H5S_SIMPLE); if (h_space < 0) error("Error while creating data space for field '%s'.", props.name); int rank = 0; hsize_t shape[2]; hsize_t source_shape[2]; hsize_t start[2] = {0, 0}; hsize_t count[2]; if (props.dimension > 1) { rank = 2; shape[0] = N_total; shape[1] = props.dimension; source_shape[0] = 0; source_shape[1] = props.dimension; count[0] = 0; count[1] = props.dimension; } else { rank = 1; shape[0] = N_total; shape[1] = 0; source_shape[0] = 0; source_shape[1] = 0; count[0] = 0; count[1] = 0; } /* Change shape of data space */ hid_t h_err = H5Sset_extent_simple(h_space, rank, shape, NULL); if (h_err < 0) error("Error while changing data space shape for field '%s'.", props.name); /* Dataset type */ hid_t h_type = H5Tcopy(io_hdf5_type(props.type)); /* Dataset properties */ hid_t h_prop = H5Pcreate(H5P_DATASET_CREATE); /* Are we imposing some form of lossy compression filter? */ char comp_buffer[32] = "None"; if (lossy_compression != compression_write_lossless) sprintf(comp_buffer, "%s", lossy_compression_schemes_names[lossy_compression]); /* The name of the dataset to map to in the other files */ char source_dataset_name[256]; sprintf(source_dataset_name, "PartType%d/%s", ptype, props.name); /* Construct a relative base name */ char fileName_relative_base[256]; int pos_last_slash = strlen(fileName_base) - 1; for (/* */; pos_last_slash >= 0; --pos_last_slash) if (fileName_base[pos_last_slash] == '/') break; sprintf(fileName_relative_base, "%s", &fileName_base[pos_last_slash + 1]); /* Create all the virtual mappings */ for (int i = 0; i < num_ranks; ++i) { /* Get the number of particles of this type written on this rank */ count[0] = N_counts[i * swift_type_count + ptype]; /* Select the space in the virtual file */ h_err = H5Sselect_hyperslab(h_space, H5S_SELECT_SET, start, /*stride=*/NULL, count, /*block=*/NULL); if (h_err < 0) error("Error selecting hyper-slab in the virtual file"); /* Select the space in the (already existing) source file */ source_shape[0] = count[0]; hid_t h_source_space = H5Screate_simple(rank, source_shape, NULL); if (h_source_space < 0) error("Error creating space in the source file"); char fileName[1024]; sprintf(fileName, "%s.%d.hdf5", fileName_relative_base, i); /* Make the virtual link */ h_err = H5Pset_virtual(h_prop, h_space, fileName, source_dataset_name, h_source_space); if (h_err < 0) error("Error setting the virtual properties"); H5Sclose(h_source_space); /* Move to the next slab (i.e. next file) */ start[0] += count[0]; } /* Create virtual dataset */ const hid_t h_data = H5Dcreate(grp, props.name, h_type, h_space, H5P_DEFAULT, h_prop, H5P_DEFAULT); if (h_data < 0) error("Error while creating dataspace '%s'.", props.name); /* Write unit conversion factors for this data set */ char buffer[FIELD_BUFFER_SIZE] = {0}; units_cgs_conversion_string(buffer, snapshot_units, props.units, props.scale_factor_exponent); float baseUnitsExp[5]; units_get_base_unit_exponents_array(baseUnitsExp, props.units); io_write_attribute_f(h_data, "U_M exponent", baseUnitsExp[UNIT_MASS]); io_write_attribute_f(h_data, "U_L exponent", baseUnitsExp[UNIT_LENGTH]); io_write_attribute_f(h_data, "U_t exponent", baseUnitsExp[UNIT_TIME]); io_write_attribute_f(h_data, "U_I exponent", baseUnitsExp[UNIT_CURRENT]); io_write_attribute_f(h_data, "U_T exponent", baseUnitsExp[UNIT_TEMPERATURE]); io_write_attribute_f(h_data, "h-scale exponent", 0.f); io_write_attribute_f(h_data, "a-scale exponent", props.scale_factor_exponent); io_write_attribute_s(h_data, "Expression for physical CGS units", buffer); io_write_attribute_s(h_data, "Lossy compression filter", comp_buffer); io_write_attribute_b(h_data, "Value stored as physical", props.is_physical); io_write_attribute_b(h_data, "Property can be converted to comoving", props.is_convertible_to_comoving); /* Write the actual number this conversion factor corresponds to */ const double factor = units_cgs_conversion_factor(snapshot_units, props.units); io_write_attribute_d( h_data, "Conversion factor to CGS (not including cosmological corrections)", factor); io_write_attribute_d( h_data, "Conversion factor to physical CGS (including cosmological corrections)", factor * pow(e->cosmology->a, props.scale_factor_exponent)); #ifdef SWIFT_DEBUG_CHECKS if (strlen(props.description) == 0) error("Invalid (empty) description of the field '%s'", props.name); #endif /* Write the full description */ io_write_attribute_s(h_data, "Description", props.description); /* Add a line to the XMF */ if (xmfFile != NULL) { char fileName[1024]; sprintf(fileName, "%s.hdf5", fileName_base); xmf_write_line(xmfFile, fileName, /*distributed=*/1, partTypeGroupName, props.name, N_total, props.dimension, props.type); } /* Close everything */ H5Tclose(h_type); H5Pclose(h_prop); H5Dclose(h_data); H5Sclose(h_space); #else error( "Function cannot be called when the code is compiled with hdf5 older " "than 1.10.0"); #endif } /** * @brief Prepares a file for a parallel write. * * @param e The #engine. * @param fileName The file name to write to. * @param N_total The total number of particles of each type to write. * @param numFields The number of fields to write for each particle type. * @param internal_units The #unit_system used internally. * @param snapshot_units The #unit_system used in the snapshots. * @param fof Is this a snapshot related to a stand-alone FOF call? * @param subsample_any Are any fields being subsampled? * @param subsample_fraction The subsampling fraction of each particle type. */ void write_virtual_file(struct engine* e, const char* fileName_base, const char* xmfFileName, const long long N_total[swift_type_count], const long long* N_counts, const int num_ranks, const int to_write[swift_type_count], const int numFields[swift_type_count], char current_selection_name[FIELD_BUFFER_SIZE], const struct unit_system* internal_units, const struct unit_system* snapshot_units, const int fof, const int subsample_any, const float subsample_fraction[swift_type_count]) { #if H5_VERSION_GE(1, 10, 0) struct output_options* output_options = e->output_options; const int with_cosmology = e->policy & engine_policy_cosmology; const int with_cooling = e->policy & engine_policy_cooling; const int with_temperature = e->policy & engine_policy_temperature; const int with_fof = e->policy & engine_policy_fof; #ifdef HAVE_VELOCIRAPTOR const int with_stf = (e->policy & engine_policy_structure_finding) && (e->s->gpart_group_data != NULL); #else const int with_stf = 0; #endif const int with_rt = e->policy & engine_policy_rt; FILE* xmfFile = 0; int numFiles = 1; /* First time, we need to create the XMF file */ if (e->snapshot_output_count == 0) xmf_create_file(xmfFileName); /* Prepare the XMF file for the new entry */ xmfFile = xmf_prepare_file(xmfFileName); char fileName[1024]; sprintf(fileName, "%s.hdf5", fileName_base); /* Write the part of the XMF file corresponding to this * specific output */ xmf_write_outputheader(xmfFile, fileName, e->time); /* Set the minimal API version to avoid issues with advanced features */ hid_t h_props = H5Pcreate(H5P_FILE_ACCESS); herr_t err = H5Pset_libver_bounds(h_props, HDF5_LOWEST_FILE_FORMAT_VERSION, HDF5_HIGHEST_FILE_FORMAT_VERSION); if (err < 0) error("Error setting the hdf5 API version"); /* Open HDF5 file with the chosen parameters */ hid_t h_file = H5Fcreate(fileName, H5F_ACC_TRUNC, H5P_DEFAULT, h_props); if (h_file < 0) error("Error while opening file '%s'.", fileName); /* Open header to write simulation properties */ /* message("Writing file header..."); */ hid_t h_grp = H5Gcreate(h_file, "/Header", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating file header\n"); /* Convert basic output information to snapshot units */ const double factor_time = units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_TIME); const double factor_length = units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_LENGTH); const double dblTime = e->time * factor_time; const double dim[3] = {e->s->dim[0] * factor_length, e->s->dim[1] * factor_length, e->s->dim[2] * factor_length}; /* Print the relevant information and print status */ io_write_attribute(h_grp, "BoxSize", DOUBLE, dim, 3); io_write_attribute(h_grp, "Time", DOUBLE, &dblTime, 1); const int dimension = (int)hydro_dimension; io_write_attribute(h_grp, "Dimension", INT, &dimension, 1); io_write_attribute(h_grp, "Redshift", DOUBLE, &e->cosmology->z, 1); io_write_attribute(h_grp, "Scale-factor", DOUBLE, &e->cosmology->a, 1); io_write_attribute_s(h_grp, "Code", "SWIFT"); io_write_attribute_s(h_grp, "RunName", e->run_name); io_write_attribute_s(h_grp, "System", hostname()); io_write_attribute(h_grp, "Shift", DOUBLE, e->s->initial_shift, 3); /* Write out the particle types */ io_write_part_type_names(h_grp); /* Write out the time-base */ if (with_cosmology) { io_write_attribute_d(h_grp, "TimeBase_dloga", e->time_base); const double delta_t = cosmology_get_timebase(e->cosmology, e->ti_current); io_write_attribute_d(h_grp, "TimeBase_dt", delta_t); } else { io_write_attribute_d(h_grp, "TimeBase_dloga", 0); io_write_attribute_d(h_grp, "TimeBase_dt", e->time_base); } /* Store the time at which the snapshot was written */ time_t tm = time(NULL); struct tm* timeinfo = localtime(&tm); char snapshot_date[64]; strftime(snapshot_date, 64, "%T %F %Z", timeinfo); io_write_attribute_s(h_grp, "SnapshotDate", snapshot_date); /* GADGET-2 legacy values */ /* Number of particles of each type */ long long numParticlesThisFile[swift_type_count] = {0}; unsigned int numParticles[swift_type_count] = {0}; unsigned int numParticlesHighWord[swift_type_count] = {0}; for (int ptype = 0; ptype < swift_type_count; ++ptype) { numParticles[ptype] = (unsigned int)N_total[ptype]; numParticlesHighWord[ptype] = (unsigned int)(N_total[ptype] >> 32); if (numFields[ptype] == 0) { numParticlesThisFile[ptype] = 0; } else { numParticlesThisFile[ptype] = N_total[ptype]; } } io_write_attribute(h_grp, "NumPart_ThisFile", LONGLONG, numParticlesThisFile, swift_type_count); io_write_attribute(h_grp, "NumPart_Total", UINT, numParticles, swift_type_count); io_write_attribute(h_grp, "NumPart_Total_HighWord", UINT, numParticlesHighWord, swift_type_count); io_write_attribute(h_grp, "TotalNumberOfParticles", LONGLONG, N_total, swift_type_count); double MassTable[swift_type_count] = {0}; io_write_attribute(h_grp, "MassTable", DOUBLE, MassTable, swift_type_count); io_write_attribute(h_grp, "InitialMassTable", DOUBLE, e->s->initial_mean_mass_particles, swift_type_count); unsigned int flagEntropy[swift_type_count] = {0}; flagEntropy[0] = writeEntropyFlag(); io_write_attribute(h_grp, "Flag_Entropy_ICs", UINT, flagEntropy, swift_type_count); io_write_attribute(h_grp, "NumFilesPerSnapshot", INT, &numFiles, 1); io_write_attribute_i(h_grp, "ThisFile", 0); io_write_attribute_s(h_grp, "SelectOutput", current_selection_name); io_write_attribute_i(h_grp, "Virtual", 1); io_write_attribute(h_grp, "CanHaveTypes", INT, to_write, swift_type_count); if (subsample_any) { io_write_attribute_s(h_grp, "OutputType", "SubSampled"); io_write_attribute(h_grp, "SubSampleFractions", FLOAT, subsample_fraction, swift_type_count); } else { io_write_attribute_s(h_grp, "OutputType", "FullVolume"); } /* Close header */ H5Gclose(h_grp); /* Copy metadata from ICs to the file */ ic_info_write_hdf5(e->ics_metadata, h_file); /* Write all the meta-data */ io_write_meta_data(h_file, e, internal_units, snapshot_units, fof); /* Loop over all particle types */ for (int ptype = 0; ptype < swift_type_count; ptype++) { /* Don't do anything if there are * (a) no particles of this kind in this run, or * (b) if we have disabled every field of this particle type. */ if (!to_write[ptype] || numFields[ptype] == 0) continue; /* Add the global information for that particle type to * the XMF meta-file */ xmf_write_groupheader(xmfFile, fileName, /*distributed=*/1, N_total[ptype], (enum part_type)ptype); /* Create the particle group in the file */ char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d", ptype); h_grp = H5Gcreate(h_file, partTypeGroupName, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating particle group %s.", partTypeGroupName); /* Add an alias name for convenience */ char aliasName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(aliasName, PARTICLE_GROUP_BUFFER_SIZE, "/%sParticles", part_type_names[ptype]); hid_t h_err = H5Lcreate_soft(partTypeGroupName, h_grp, aliasName, H5P_DEFAULT, H5P_DEFAULT); if (h_err < 0) error("Error while creating alias for particle group.\n"); /* Write the number of particles as an attribute */ io_write_attribute_ll(h_grp, "NumberOfParticles", N_total[ptype]); io_write_attribute_ll(h_grp, "TotalNumberOfParticles", N_total[ptype]); int num_fields = 0; struct io_props list[io_max_size_output_list]; bzero(list, io_max_size_output_list * sizeof(struct io_props)); /* Write particle fields from the particle structure */ switch (ptype) { case swift_type_gas: io_select_hydro_fields(NULL, NULL, with_cosmology, with_cooling, with_temperature, with_fof, with_stf, with_rt, e, &num_fields, list); break; case swift_type_dark_matter: case swift_type_dark_matter_background: io_select_dm_fields(NULL, NULL, with_fof, with_stf, e, &num_fields, list); break; case swift_type_neutrino: io_select_neutrino_fields(NULL, NULL, with_fof, with_stf, e, &num_fields, list); break; case swift_type_sink: io_select_sink_fields(NULL, with_cosmology, with_fof, with_stf, e, &num_fields, list); break; case swift_type_stars: io_select_star_fields(NULL, with_cosmology, with_fof, with_stf, with_rt, e, &num_fields, list); break; case swift_type_black_hole: io_select_bh_fields(NULL, with_cosmology, with_fof, with_stf, e, &num_fields, list); break; default: error("Particle Type %d not yet supported. Aborting", ptype); } /* Verify we are not going to crash when writing below */ if (num_fields >= io_max_size_output_list) error("Too many fields to write for particle type %d", ptype); for (int i = 0; i < num_fields; ++i) { if (!list[i].is_used) error("List of field contains an empty entry!"); if (!list[i].dimension) error("Dimension of field '%s' is <= 1!", list[i].name); } /* Did the user specify a non-standard default for the entire particle * type? */ const enum lossy_compression_schemes compression_level_current_default = output_options_get_ptype_default_compression( output_options->select_output, current_selection_name, (enum part_type)ptype, e->verbose); /* Prepare everything that is not cancelled */ int num_fields_written = 0; for (int i = 0; i < num_fields; ++i) { /* Did the user cancel this field? */ const enum lossy_compression_schemes compression_level = output_options_get_field_compression( output_options, current_selection_name, list[i].name, (enum part_type)ptype, compression_level_current_default, e->verbose); if (compression_level != compression_do_not_write) { write_array_virtual(e, h_grp, fileName_base, xmfFile, partTypeGroupName, list[i], N_total[ptype], N_counts, num_ranks, ptype, compression_level, snapshot_units); num_fields_written++; } } /* Only write this now that we know exactly how many fields there are. */ io_write_attribute_i(h_grp, "NumberOfFields", num_fields_written); /* Close particle group */ H5Gclose(h_grp); /* Close this particle group in the XMF file as well */ xmf_write_groupfooter(xmfFile, (enum part_type)ptype); } /* Write LXMF file descriptor */ xmf_write_outputfooter(xmfFile, e->snapshot_output_count, e->time); /* Close the file */ H5Fclose(h_file); H5Pclose(h_props); #else error( "Function cannot be called when the code is compiled with hdf5 older " "than 1.10.0"); #endif } /** * @brief Writes a snapshot distributed into multiple files. * * @param e The engine containing all the system. * @param internal_units The #unit_system used internally * @param snapshot_units The #unit_system used in the snapshots * @param fof Is this a snapshot related to a stand-alone FOF call? * @param mpi_rank The rank number of the calling MPI rank. * @param mpi_size the number of MPI ranks. * @param comm The communicator used by the MPI ranks. * @param info The MPI information object. * * Creates a series of HDF5 output files (1 per MPI node) as a snapshot. * Writes the particles contained in the engine. * If such files already exist, it is erased and replaced by the new one. * The companion XMF file is also updated accordingly. */ void write_output_distributed(struct engine* e, const struct unit_system* internal_units, const struct unit_system* snapshot_units, const int fof, const int mpi_rank, const int mpi_size, MPI_Comm comm, MPI_Info info) { hid_t h_file = 0, h_grp = 0; int numFiles = mpi_size; const struct part* parts = e->s->parts; const struct xpart* xparts = e->s->xparts; const struct gpart* gparts = e->s->gparts; const struct sink* sinks = e->s->sinks; const struct spart* sparts = e->s->sparts; const struct bpart* bparts = e->s->bparts; struct output_options* output_options = e->output_options; struct output_list* output_list = e->output_list_snapshots; const int with_cosmology = e->policy & engine_policy_cosmology; const int with_cooling = e->policy & engine_policy_cooling; const int with_temperature = e->policy & engine_policy_temperature; const int with_fof = e->policy & engine_policy_fof; const int with_DM_background = e->s->with_DM_background; const int with_DM = e->s->with_DM; const int with_neutrinos = e->s->with_neutrinos; const int with_rt = e->policy & engine_policy_rt; const int with_hydro = (e->policy & engine_policy_hydro) ? 1 : 0; const int with_stars = (e->policy & engine_policy_stars) ? 1 : 0; const int with_black_hole = (e->policy & engine_policy_black_holes) ? 1 : 0; const int with_sink = (e->policy & engine_policy_sinks) ? 1 : 0; #ifdef HAVE_VELOCIRAPTOR const int with_stf = (e->policy & engine_policy_structure_finding) && (e->s->gpart_group_data != NULL); #else const int with_stf = 0; #endif /* Number of particles currently in the arrays */ const size_t Ntot = e->s->nr_gparts; const size_t Ngas = e->s->nr_parts; const size_t Nsinks = e->s->nr_sinks; const size_t Nstars = e->s->nr_sparts; const size_t Nblackholes = e->s->nr_bparts; /* Determine if we are writing a reduced snapshot, and if so which * output selection type to use */ char current_selection_name[FIELD_BUFFER_SIZE] = select_output_header_default_name; if (output_list) { /* Users could have specified a different Select Output scheme for each * snapshot. */ output_list_get_current_select_output(output_list, current_selection_name); } int snap_count = -1; int number_digits = -1; if (output_list && output_list->alternative_labels_on) { snap_count = output_list->snapshot_labels[snap_count]; number_digits = 0; } else if (e->snapshot_invoke_stf) { snap_count = e->stf_output_count; number_digits = 4; } else { snap_count = e->snapshot_output_count; number_digits = 4; } /* Directory and file name */ char dirName[1024]; char fileName[1024]; char fileName_base[1024]; char xmfFileName[FILENAME_BUFFER_SIZE]; char snapshot_subdir_name[FILENAME_BUFFER_SIZE]; char snapshot_base_name[FILENAME_BUFFER_SIZE]; output_options_get_basename(output_options, current_selection_name, e->snapshot_subdir, e->snapshot_base_name, snapshot_subdir_name, snapshot_base_name); io_get_snapshot_filename( fileName, xmfFileName, output_list, e->snapshot_invoke_stf, e->stf_output_count, e->snapshot_output_count, e->snapshot_subdir, snapshot_subdir_name, e->snapshot_base_name, snapshot_base_name); /* Are we using a sub-dir? */ if (strnlen(e->snapshot_subdir, PARSER_MAX_LINE_SIZE) > 0) { sprintf(dirName, "%s/%s_%0*d", snapshot_subdir_name, snapshot_base_name, number_digits, snap_count); sprintf(fileName, "%s/%s_%0*d/%s_%0*d.%d.hdf5", snapshot_subdir_name, snapshot_base_name, number_digits, snap_count, snapshot_base_name, number_digits, snap_count, mpi_rank); sprintf(fileName_base, "%s/%s_%0*d/%s_%0*d", snapshot_subdir_name, snapshot_base_name, number_digits, snap_count, snapshot_base_name, number_digits, snap_count); } else { sprintf(dirName, "%s_%0*d", snapshot_base_name, number_digits, snap_count); sprintf(fileName, "%s_%0*d/%s_%0*d.%d.hdf5", snapshot_base_name, number_digits, snap_count, snapshot_base_name, number_digits, snap_count, mpi_rank); sprintf(fileName_base, "%s_%0*d/%s_%0*d", snapshot_base_name, number_digits, snap_count, snapshot_base_name, number_digits, snap_count); } /* Create the directory */ if (mpi_rank == 0) safe_checkdir(snapshot_subdir_name, /*create=*/1); if (mpi_rank == 0) safe_checkdir(dirName, /*create=*/1); MPI_Barrier(comm); /* Do we want to sub-sample any of the arrays */ int subsample[swift_type_count]; float subsample_fraction[swift_type_count]; for (int i = 0; i < swift_type_count; ++i) { subsample[i] = 0; subsample_fraction[i] = 1.f; } output_options_get_subsampling( output_options, current_selection_name, e->snapshot_subsample, e->snapshot_subsample_fraction, subsample, subsample_fraction); /* Is any particle type being subsampled? */ int subsample_any = 0; for (int i = 0; i < swift_type_count; ++i) { subsample_any += subsample[i]; if (!subsample[i]) subsample_fraction[i] = 1.f; } /* Number of particles that we will write */ size_t Ngas_written, Ndm_written, Ndm_background, Ndm_neutrino, Nsinks_written, Nstars_written, Nblackholes_written; if (subsample[swift_type_gas]) { Ngas_written = io_count_gas_to_write(e->s, /*subsample=*/1, subsample_fraction[swift_type_gas], e->snapshot_output_count); } else { Ngas_written = e->s->nr_parts - e->s->nr_inhibited_parts - e->s->nr_extra_parts; } if (subsample[swift_type_stars]) { Nstars_written = io_count_stars_to_write( e->s, /*subsample=*/1, subsample_fraction[swift_type_stars], e->snapshot_output_count); } else { Nstars_written = e->s->nr_sparts - e->s->nr_inhibited_sparts - e->s->nr_extra_sparts; } if (subsample[swift_type_black_hole]) { Nblackholes_written = io_count_black_holes_to_write( e->s, /*subsample=*/1, subsample_fraction[swift_type_black_hole], e->snapshot_output_count); } else { Nblackholes_written = e->s->nr_bparts - e->s->nr_inhibited_bparts - e->s->nr_extra_bparts; } if (subsample[swift_type_sink]) { Nsinks_written = io_count_sinks_to_write( e->s, /*subsample=*/1, subsample_fraction[swift_type_sink], e->snapshot_output_count); } else { Nsinks_written = e->s->nr_sinks - e->s->nr_inhibited_sinks - e->s->nr_extra_sinks; } Ndm_written = io_count_dark_matter_to_write( e->s, subsample[swift_type_dark_matter], subsample_fraction[swift_type_dark_matter], e->snapshot_output_count); if (with_DM_background) { Ndm_background = io_count_background_dark_matter_to_write( e->s, subsample[swift_type_dark_matter_background], subsample_fraction[swift_type_dark_matter_background], e->snapshot_output_count); } else { Ndm_background = 0; } if (with_neutrinos) { Ndm_neutrino = io_count_neutrinos_to_write( e->s, subsample[swift_type_neutrino], subsample_fraction[swift_type_neutrino], e->snapshot_output_count); } else { Ndm_neutrino = 0; } /* Compute offset in the file and total number of particles */ long long N[swift_type_count] = { Ngas_written, Ndm_written, Ndm_background, Nsinks_written, Nstars_written, Nblackholes_written, Ndm_neutrino}; /* Gather the total number of particles to write */ long long N_total[swift_type_count] = {0}; MPI_Allreduce(N, N_total, swift_type_count, MPI_LONG_LONG_INT, MPI_SUM, comm); /* Collect the number of particles written by each rank */ long long* N_counts = (long long*)malloc(mpi_size * swift_type_count * sizeof(long long)); MPI_Gather(N, swift_type_count, MPI_LONG_LONG_INT, N_counts, swift_type_count, MPI_LONG_LONG_INT, 0, comm); /* List what fields to write. * Note that we want to want to write a 0-size dataset for some species * in case future snapshots will contain them (e.g. star formation) */ const int to_write[swift_type_count] = { with_hydro, with_DM, with_DM_background, with_sink, with_stars, with_black_hole, with_neutrinos }; /* Use a single Lustre stripe with a rank-based OST offset? */ if (e->snapshot_lustre_OST_count != 0) { /* Use a random offset to avoid placing things in the same OSTs. We do * this to keep the use of OSTs balanced, much like using -1 for the * stripe. */ int offset = rand() % e->snapshot_lustre_OST_count; MPI_Bcast(&offset, 1, MPI_INT, 0, MPI_COMM_WORLD); char string[1200]; sprintf(string, "lfs setstripe -c 1 -i %d %s", ((e->nodeID + offset) % e->snapshot_lustre_OST_count), fileName); const int result = system(string); if (result != 0) { message("lfs setstripe command returned error code %d", result); } } /* Set the minimal API version to avoid issues with advanced features */ hid_t h_props = H5Pcreate(H5P_FILE_ACCESS); herr_t err = H5Pset_libver_bounds(h_props, HDF5_LOWEST_FILE_FORMAT_VERSION, HDF5_HIGHEST_FILE_FORMAT_VERSION); if (err < 0) error("Error setting the hdf5 API version"); /* Open file */ /* message("Opening file '%s'.", fileName); */ h_file = H5Fcreate(fileName, H5F_ACC_TRUNC, H5P_DEFAULT, h_props); if (h_file < 0) error("Error while opening file '%s'.", fileName); /* Open header to write simulation properties */ /* message("Writing file header..."); */ h_grp = H5Gcreate(h_file, "/Header", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating file header\n"); /* Convert basic output information to snapshot units */ const double factor_time = units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_TIME); const double factor_length = units_conversion_factor(internal_units, snapshot_units, UNIT_CONV_LENGTH); const double dblTime = e->time * factor_time; const double dim[3] = {e->s->dim[0] * factor_length, e->s->dim[1] * factor_length, e->s->dim[2] * factor_length}; /* Print the relevant information and print status */ io_write_attribute(h_grp, "BoxSize", DOUBLE, dim, 3); io_write_attribute(h_grp, "Time", DOUBLE, &dblTime, 1); const int dimension = (int)hydro_dimension; io_write_attribute(h_grp, "Dimension", INT, &dimension, 1); io_write_attribute(h_grp, "Redshift", DOUBLE, &e->cosmology->z, 1); io_write_attribute(h_grp, "Scale-factor", DOUBLE, &e->cosmology->a, 1); io_write_attribute_s(h_grp, "Code", "SWIFT"); io_write_attribute_s(h_grp, "RunName", e->run_name); /* We write rank 0's hostname so that it is uniform across all files. */ char systemname[256] = {0}; if (mpi_rank == 0) sprintf(systemname, "%s", hostname()); MPI_Bcast(systemname, 256, MPI_CHAR, 0, comm); io_write_attribute_s(h_grp, "System", systemname); io_write_attribute(h_grp, "Shift", DOUBLE, e->s->initial_shift, 3); /* Write out the particle types */ io_write_part_type_names(h_grp); /* Write out the time-base */ if (with_cosmology) { io_write_attribute_d(h_grp, "TimeBase_dloga", e->time_base); const double delta_t = cosmology_get_timebase(e->cosmology, e->ti_current); io_write_attribute_d(h_grp, "TimeBase_dt", delta_t); } else { io_write_attribute_d(h_grp, "TimeBase_dloga", 0); io_write_attribute_d(h_grp, "TimeBase_dt", e->time_base); } /* Store the time at which the snapshot was written */ time_t tm = time(NULL); struct tm* timeinfo = localtime(&tm); char snapshot_date[64]; strftime(snapshot_date, 64, "%T %F %Z", timeinfo); io_write_attribute_s(h_grp, "SnapshotDate", snapshot_date); /* GADGET-2 legacy values: Number of particles of each type */ long long numParticlesThisFile[swift_type_count] = {0}; unsigned int numParticles[swift_type_count] = {0}; unsigned int numParticlesHighWord[swift_type_count] = {0}; /* Total number of fields to write per ptype */ int numFields[swift_type_count] = {0}; for (int ptype = 0; ptype < swift_type_count; ++ptype) { numParticles[ptype] = (unsigned int)N_total[ptype]; numParticlesHighWord[ptype] = (unsigned int)(N_total[ptype] >> 32); numFields[ptype] = output_options_get_num_fields_to_write( output_options, current_selection_name, ptype); if (numFields[ptype] == 0) { numParticlesThisFile[ptype] = 0; } else { numParticlesThisFile[ptype] = N[ptype]; } } io_write_attribute(h_grp, "NumPart_ThisFile", LONGLONG, numParticlesThisFile, swift_type_count); io_write_attribute(h_grp, "NumPart_Total", UINT, numParticles, swift_type_count); io_write_attribute(h_grp, "NumPart_Total_HighWord", UINT, numParticlesHighWord, swift_type_count); io_write_attribute(h_grp, "TotalNumberOfParticles", LONGLONG, N_total, swift_type_count); double MassTable[swift_type_count] = {0}; io_write_attribute(h_grp, "MassTable", DOUBLE, MassTable, swift_type_count); io_write_attribute(h_grp, "InitialMassTable", DOUBLE, e->s->initial_mean_mass_particles, swift_type_count); unsigned int flagEntropy[swift_type_count] = {0}; flagEntropy[0] = writeEntropyFlag(); io_write_attribute(h_grp, "Flag_Entropy_ICs", UINT, flagEntropy, swift_type_count); io_write_attribute_i(h_grp, "NumFilesPerSnapshot", numFiles); io_write_attribute_i(h_grp, "ThisFile", mpi_rank); io_write_attribute_s(h_grp, "SelectOutput", current_selection_name); io_write_attribute_i(h_grp, "Virtual", 0); io_write_attribute(h_grp, "CanHaveTypes", INT, to_write, swift_type_count); if (subsample_any) { io_write_attribute_s(h_grp, "OutputType", "SubSampled"); io_write_attribute(h_grp, "SubSampleFractions", FLOAT, subsample_fraction, swift_type_count); } else { io_write_attribute_s(h_grp, "OutputType", "FullVolume"); } /* Close header */ H5Gclose(h_grp); /* Copy metadata from ICs to the file */ ic_info_write_hdf5(e->ics_metadata, h_file); /* Write all the meta-data */ io_write_meta_data(h_file, e, internal_units, snapshot_units, fof); /* Now write the top-level cell structure * We use a global offset of 0 here. This means that the cells will write * their offset with respect to the start of the file they belong to and * not a global offset */ long long global_offsets[swift_type_count] = {0}; h_grp = H5Gcreate(h_file, "/Cells", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating cells group"); /* Write the location of the particles in the arrays */ io_write_cell_offsets(h_grp, e->s->cdim, e->s->dim, e->s->cells_top, e->s->nr_cells, e->s->width, mpi_rank, /*distributed=*/1, subsample, subsample_fraction, e->snapshot_output_count, N_total, global_offsets, to_write, numFields, internal_units, snapshot_units); H5Gclose(h_grp); /* Loop over all particle types */ for (int ptype = 0; ptype < swift_type_count; ptype++) { /* Don't do anything if there are * (a) no particles of this kind in this run, or * (b) if we have disabled every field of this particle type. */ if (!to_write[ptype] || numFields[ptype] == 0) continue; /* Open the particle group in the file */ char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d", ptype); h_grp = H5Gcreate(h_file, partTypeGroupName, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating particle group.\n"); /* Add an alias name for convenience */ char aliasName[PARTICLE_GROUP_BUFFER_SIZE]; snprintf(aliasName, PARTICLE_GROUP_BUFFER_SIZE, "/%sParticles", part_type_names[ptype]); hid_t h_err = H5Lcreate_soft(partTypeGroupName, h_grp, aliasName, H5P_DEFAULT, H5P_DEFAULT); if (h_err < 0) error("Error while creating alias for particle group.\n"); /* Write the number of particles as an attribute */ io_write_attribute_ll(h_grp, "NumberOfParticles", N[ptype]); io_write_attribute_ll(h_grp, "TotalNumberOfParticles", N_total[ptype]); int num_fields = 0; struct io_props list[io_max_size_output_list]; bzero(list, io_max_size_output_list * sizeof(struct io_props)); size_t Nparticles = 0; struct part* parts_written = NULL; struct xpart* xparts_written = NULL; struct gpart* gparts_written = NULL; struct velociraptor_gpart_data* gpart_group_data_written = NULL; struct sink* sinks_written = NULL; struct spart* sparts_written = NULL; struct bpart* bparts_written = NULL; /* Write particle fields from the particle structure */ switch (ptype) { case swift_type_gas: { if (Ngas == Ngas_written) { /* No inhibted particles: easy case */ Nparticles = Ngas; /* Select the fields to write */ io_select_hydro_fields(parts, xparts, with_cosmology, with_cooling, with_temperature, with_fof, with_stf, with_rt, e, &num_fields, list); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Ngas_written; /* Allocate temporary arrays */ if (swift_memalign("parts_written", (void**)&parts_written, part_align, Ngas_written * sizeof(struct part)) != 0) error("Error while allocating temporary memory for parts"); if (swift_memalign("xparts_written", (void**)&xparts_written, xpart_align, Ngas_written * sizeof(struct xpart)) != 0) error("Error while allocating temporary memory for xparts"); /* Collect the particles we want to write */ io_collect_parts_to_write( parts, xparts, parts_written, xparts_written, subsample[swift_type_gas], subsample_fraction[swift_type_gas], e->snapshot_output_count, Ngas, Ngas_written); /* Select the fields to write */ io_select_hydro_fields(parts_written, xparts_written, with_cosmology, with_cooling, with_temperature, with_fof, with_stf, with_rt, e, &num_fields, list); } } break; case swift_type_dark_matter: { if (Ntot == Ndm_written) { /* This is a DM-only run without background or inhibited particles * or neutrinos */ Nparticles = Ntot; /* Select the fields to write */ io_select_dm_fields(gparts, e->s->gpart_group_data, with_fof, with_stf, e, &num_fields, list); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Ndm_written; /* Allocate temporary array */ if (swift_memalign("gparts_written", (void**)&gparts_written, gpart_align, Ndm_written * sizeof(struct gpart)) != 0) error("Error while allocating temporary memory for gparts"); if (with_stf) { if (swift_memalign( "gpart_group_written", (void**)&gpart_group_data_written, gpart_align, Ndm_written * sizeof(struct velociraptor_gpart_data)) != 0) error( "Error while allocating temporary memory for gparts STF " "data"); } /* Collect the non-inhibited DM particles from gpart */ io_collect_gparts_to_write( gparts, e->s->gpart_group_data, gparts_written, gpart_group_data_written, subsample[swift_type_dark_matter], subsample_fraction[swift_type_dark_matter], e->snapshot_output_count, Ntot, Ndm_written, with_stf); /* Select the fields to write */ io_select_dm_fields(gparts_written, gpart_group_data_written, with_fof, with_stf, e, &num_fields, list); } } break; case swift_type_dark_matter_background: { /* Ok, we need to fish out the particles we want */ Nparticles = Ndm_background; /* Allocate temporary array */ if (swift_memalign("gparts_written", (void**)&gparts_written, gpart_align, Ndm_background * sizeof(struct gpart)) != 0) error("Error while allocating temporart memory for gparts"); if (with_stf) { if (swift_memalign( "gpart_group_written", (void**)&gpart_group_data_written, gpart_align, Ndm_background * sizeof(struct velociraptor_gpart_data)) != 0) error( "Error while allocating temporart memory for gparts STF " "data"); } /* Collect the non-inhibited DM particles from gpart */ io_collect_gparts_background_to_write( gparts, e->s->gpart_group_data, gparts_written, gpart_group_data_written, subsample[swift_type_dark_matter_background], subsample_fraction[swift_type_dark_matter_background], e->snapshot_output_count, Ntot, Ndm_background, with_stf); /* Select the fields to write */ io_select_dm_fields(gparts_written, gpart_group_data_written, with_fof, with_stf, e, &num_fields, list); } break; case swift_type_neutrino: { /* Ok, we need to fish out the particles we want */ Nparticles = Ndm_neutrino; /* Allocate temporary array */ if (swift_memalign("gparts_written", (void**)&gparts_written, gpart_align, Ndm_neutrino * sizeof(struct gpart)) != 0) error("Error while allocating temporart memory for gparts"); if (with_stf) { if (swift_memalign( "gpart_group_written", (void**)&gpart_group_data_written, gpart_align, Ndm_neutrino * sizeof(struct velociraptor_gpart_data)) != 0) error( "Error while allocating temporart memory for gparts STF " "data"); } /* Collect the non-inhibited DM particles from gpart */ io_collect_gparts_neutrino_to_write( gparts, e->s->gpart_group_data, gparts_written, gpart_group_data_written, subsample[swift_type_neutrino], subsample_fraction[swift_type_neutrino], e->snapshot_output_count, Ntot, Ndm_neutrino, with_stf); /* Select the fields to write */ io_select_neutrino_fields(gparts_written, gpart_group_data_written, with_fof, with_stf, e, &num_fields, list); } break; case swift_type_sink: { if (Nsinks == Nsinks_written) { /* No inhibted particles: easy case */ Nparticles = Nsinks; /* Select the fields to write */ io_select_sink_fields(sinks, with_cosmology, with_fof, with_stf, e, &num_fields, list); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nsinks_written; /* Allocate temporary arrays */ if (swift_memalign("sinks_written", (void**)&sinks_written, sink_align, Nsinks_written * sizeof(struct sink)) != 0) error("Error while allocating temporary memory for sinks"); /* Collect the particles we want to write */ io_collect_sinks_to_write( sinks, sinks_written, subsample[swift_type_sink], subsample_fraction[swift_type_sink], e->snapshot_output_count, Nsinks, Nsinks_written); /* Select the fields to write */ io_select_sink_fields(sinks_written, with_cosmology, with_fof, with_stf, e, &num_fields, list); } } break; case swift_type_stars: { if (Nstars == Nstars_written) { /* No inhibted particles: easy case */ Nparticles = Nstars; /* Select the fields to write */ io_select_star_fields(sparts, with_cosmology, with_fof, with_stf, with_rt, e, &num_fields, list); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nstars_written; /* Allocate temporary arrays */ if (swift_memalign("sparts_written", (void**)&sparts_written, spart_align, Nstars_written * sizeof(struct spart)) != 0) error("Error while allocating temporary memory for sparts"); /* Collect the particles we want to write */ io_collect_sparts_to_write( sparts, sparts_written, subsample[swift_type_stars], subsample_fraction[swift_type_stars], e->snapshot_output_count, Nstars, Nstars_written); /* Select the fields to write */ io_select_star_fields(sparts_written, with_cosmology, with_fof, with_stf, with_rt, e, &num_fields, list); } } break; case swift_type_black_hole: { if (Nblackholes == Nblackholes_written) { /* No inhibted particles: easy case */ Nparticles = Nblackholes; /* Select the fields to write */ io_select_bh_fields(bparts, with_cosmology, with_fof, with_stf, e, &num_fields, list); } else { /* Ok, we need to fish out the particles we want */ Nparticles = Nblackholes_written; /* Allocate temporary arrays */ if (swift_memalign("bparts_written", (void**)&bparts_written, bpart_align, Nblackholes_written * sizeof(struct bpart)) != 0) error("Error while allocating temporary memory for bparts"); /* Collect the particles we want to write */ io_collect_bparts_to_write( bparts, bparts_written, subsample[swift_type_black_hole], subsample_fraction[swift_type_black_hole], e->snapshot_output_count, Nblackholes, Nblackholes_written); /* Select the fields to write */ io_select_bh_fields(bparts_written, with_cosmology, with_fof, with_stf, e, &num_fields, list); } } break; default: error("Particle Type %d not yet supported. Aborting", ptype); } /* Verify we are not going to crash when writing below */ if (num_fields >= io_max_size_output_list) error("Too many fields to write for particle type %d", ptype); for (int i = 0; i < num_fields; ++i) { if (!list[i].is_used) error("List of field contains an empty entry!"); if (!list[i].dimension) error("Dimension of field '%s' is <= 1!", list[i].name); } /* Did the user specify a non-standard default for the entire particle * type? */ const enum lossy_compression_schemes compression_level_current_default = output_options_get_ptype_default_compression( output_options->select_output, current_selection_name, (enum part_type)ptype, e->verbose); /* Write everything that is not cancelled */ int num_fields_written = 0; for (int i = 0; i < num_fields; ++i) { /* Did the user cancel this field? */ const enum lossy_compression_schemes compression_level = output_options_get_field_compression( output_options, current_selection_name, list[i].name, (enum part_type)ptype, compression_level_current_default, e->verbose); if (compression_level != compression_do_not_write) { write_distributed_array(e, h_grp, fileName, partTypeGroupName, list[i], Nparticles, compression_level, internal_units, snapshot_units); num_fields_written++; } } /* Only write this now that we know exactly how many fields there are. */ io_write_attribute_i(h_grp, "NumberOfFields", num_fields_written); /* Free temporary arrays */ if (parts_written) swift_free("parts_written", parts_written); if (xparts_written) swift_free("xparts_written", xparts_written); if (gparts_written) swift_free("gparts_written", gparts_written); if (gpart_group_data_written) swift_free("gpart_group_written", gpart_group_data_written); if (sinks_written) swift_free("sinks_written", sinks_written); if (sparts_written) swift_free("sparts_written", sparts_written); if (bparts_written) swift_free("bparts_written", bparts_written); /* Close particle group */ H5Gclose(h_grp); } /* message("Done writing particles..."); */ /* Close file */ H5Fclose(h_file); H5Pclose(h_props); #if H5_VERSION_GE(1, 10, 0) /* Write the virtual meta-file */ if (mpi_rank == 0) write_virtual_file(e, fileName_base, xmfFileName, N_total, N_counts, mpi_size, to_write, numFields, current_selection_name, internal_units, snapshot_units, fof, subsample_any, subsample_fraction); /* Make sure nobody is allowed to progress until rank 0 is done. */ MPI_Barrier(comm); /* Now write the top-level cell structure in the virtual file * but this time, it is *not* distributed. i.e. all the offsets are * in the virtual file */ hid_t h_file_cells = 0, h_grp_cells = 0; if (mpi_rank == 0) { char fileName_virtual[1030]; sprintf(fileName_virtual, "%s.hdf5", fileName_base); h_props = H5Pcreate(H5P_FILE_ACCESS); err = H5Pset_libver_bounds(h_props, HDF5_LOWEST_FILE_FORMAT_VERSION, HDF5_HIGHEST_FILE_FORMAT_VERSION); if (err < 0) error("Error setting the hdf5 API version"); /* Open the snapshot on rank 0 */ h_file_cells = H5Fopen(fileName_virtual, H5F_ACC_RDWR, h_props); if (h_file_cells < 0) error("Error while opening file '%s' on rank %d.", fileName_virtual, mpi_rank); /* Create the group we want in the file */ h_grp_cells = H5Gcreate(h_file_cells, "/Cells", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp_cells < 0) error("Error while creating cells group"); } /* We need to recompute the offsets since they are now with respect * to a single file. */ for (int i = 0; i < swift_type_count; ++i) global_offsets[i] = 0; MPI_Exscan(N, global_offsets, swift_type_count, MPI_LONG_LONG_INT, MPI_SUM, comm); /* Write the location of the particles in the arrays */ io_write_cell_offsets(h_grp_cells, e->s->cdim, e->s->dim, e->s->cells_top, e->s->nr_cells, e->s->width, mpi_rank, /*distributed=*/0, subsample, subsample_fraction, e->snapshot_output_count, N_total, global_offsets, to_write, numFields, internal_units, snapshot_units); /* Close everything */ if (mpi_rank == 0) { H5Gclose(h_grp_cells); H5Fclose(h_file_cells); H5Pclose(h_props); } #endif /* Free the counts-per-rank array */ free(N_counts); /* Make sure nobody is allowed to progress until everyone is done. */ MPI_Barrier(comm); e->snapshot_output_count++; if (e->snapshot_invoke_stf) e->stf_output_count++; } #endif /* HAVE_HDF5 && WITH_MPI */