/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk), * Matthieu Schaller (schaller@strw.leidenuniv.nl). * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ /* Config parameters. */ #include /* This object's header. */ #include "common_io.h" /* Local includes. */ #include "engine.h" #include "error.h" #include "kernel_hydro.h" #include "part.h" #include "part_type.h" #include "threadpool.h" #include "tools.h" #include "version.h" /* I/O functions of each sub-module */ #include "black_holes_io.h" #include "chemistry_io.h" #include "cooling_io.h" #include "extra_io.h" #include "feedback.h" #include "fof_io.h" #include "gravity_io.h" #include "hydro_io.h" #include "mhd_io.h" #include "neutrino_io.h" #include "particle_splitting.h" #include "rt_io.h" #include "sink_io.h" #include "star_formation_io.h" #include "stars_io.h" #include "tracers_io.h" #include "velociraptor_io.h" /* Some standard headers. */ #include #include #include #include #include #if defined(HAVE_HDF5) #include /* MPI headers. */ #ifdef WITH_MPI #include #endif /** * @brief Converts a C data type to the HDF5 equivalent. * * This function is a trivial wrapper around the HDF5 types but allows * to change the exact storage types matching the code types in a transparent *way. */ hid_t io_hdf5_type(enum IO_DATA_TYPE type) { switch (type) { case INT: return H5T_NATIVE_INT; case UINT8: return H5T_NATIVE_UINT8; case UINT: return H5T_NATIVE_UINT; case UINT64: return H5T_NATIVE_UINT64; case LONG: return H5T_NATIVE_LONG; case ULONG: return H5T_NATIVE_ULONG; case LONGLONG: return H5T_NATIVE_LLONG; case ULONGLONG: return H5T_NATIVE_ULLONG; case FLOAT: return H5T_NATIVE_FLOAT; case DOUBLE: return H5T_NATIVE_DOUBLE; case CHAR: return H5T_NATIVE_CHAR; case BOOL: return H5T_NATIVE_HBOOL; default: error("Unknown type"); return 0; } } /** * @brief Return 1 if the type has double precision * * Returns an error if the type is not FLOAT or DOUBLE */ int io_is_double_precision(enum IO_DATA_TYPE type) { switch (type) { case FLOAT: return 0; case DOUBLE: return 1; default: error("Invalid type"); return 0; } } /** * @brief Reads an attribute (scalar) from a given HDF5 group. * * @param grp The group from which to read. * @param name The name of the attribute to read. * @param type The #IO_DATA_TYPE of the attribute. * @param data (output) The attribute read from the HDF5 group. * * Calls #error() if an error occurs. */ void io_read_attribute(hid_t grp, const char* name, enum IO_DATA_TYPE type, void* data) { const hid_t h_attr = H5Aopen(grp, name, H5P_DEFAULT); if (h_attr < 0) error("Error while opening attribute '%s'", name); const hid_t h_err = H5Aread(h_attr, io_hdf5_type(type), data); if (h_err < 0) error("Error while reading attribute '%s'", name); H5Aclose(h_attr); } /** * @brief Reads an attribute from a given HDF5 group. * * @param grp The group from which to read. * @param name The name of the attribute to read. * @param type The #IO_DATA_TYPE of the attribute. * @param data (output) The attribute read from the HDF5 group. * * Exits gracefully (i.e. does not read the attribute at all) if * it is not present, unless debugging checks are activated. If they are, * and the read fails, we print a warning. */ void io_read_attribute_graceful(hid_t grp, const char* name, enum IO_DATA_TYPE type, void* data) { /* First, we need to check if this attribute exists to avoid raising errors * within the HDF5 library if we attempt to access an attribute that does * not exist. */ const htri_t h_exists = H5Aexists(grp, name); if (h_exists <= 0) { /* Attribute either does not exist (0) or function failed (-ve) */ #ifdef SWIFT_DEBUG_CHECKS message("WARNING: attribute '%s' does not exist.", name); #endif } else { /* Ok, now we know that it exists we can read it. */ const hid_t h_attr = H5Aopen(grp, name, H5P_DEFAULT); if (h_attr >= 0) { const hid_t h_err = H5Aread(h_attr, io_hdf5_type(type), data); if (h_err < 0) { /* Explicitly do nothing unless debugging checks are activated */ #ifdef SWIFT_DEBUG_CHECKS message("WARNING: unable to read attribute '%s'", name); #endif } } else { #ifdef SWIFT_DEBUG_CHECKS if (h_attr < 0) { message("WARNING: was unable to open attribute '%s'", name); } #endif } H5Aclose(h_attr); } } /** * @brief Asserts that the redshift in the initial conditions and the one * specified by the parameter file match. * * @param h_grp The Header group from the ICs * @param a Current scale factor as specified by parameter file */ void io_assert_valid_header_cosmology(hid_t h_grp, double a) { double redshift_from_snapshot = -1.0; io_read_attribute_graceful(h_grp, "Redshift", DOUBLE, &redshift_from_snapshot); /* If the Header/Redshift value is not present, then we skip this check */ if (redshift_from_snapshot == -1.0) return; const double current_redshift = 1.0 / a - 1.0; /* Escape if non-cosmological */ if (current_redshift == 0.) return; const double redshift_fractional_difference = fabs(redshift_from_snapshot - current_redshift) / current_redshift; if (redshift_fractional_difference >= io_redshift_tolerance) { error( "Initial redshift specified in parameter file (%lf) and redshift " "read from initial conditions (%lf) are inconsistent.", current_redshift, redshift_from_snapshot); } } /** * @brief Reads the number of elements in a HDF5 attribute. * * @param attr The attribute from which to read. * * @return The number of elements. * * Calls #error() if an error occurs. */ hsize_t io_get_number_element_in_attribute(hid_t attr) { /* Get the dataspace */ hid_t space = H5Aget_space(attr); if (space < 0) error("Failed to get data space"); /* Read the number of dimensions */ const int ndims = H5Sget_simple_extent_ndims(space); /* Read the dimensions */ hsize_t* dims = (hsize_t*)malloc(sizeof(hsize_t) * ndims); H5Sget_simple_extent_dims(space, dims, NULL); /* Compute number of elements */ hsize_t count = 1; for (int i = 0; i < ndims; i++) { count *= dims[i]; } /* Cleanup */ free(dims); H5Sclose(space); return count; }; /** * @brief Reads an attribute (array) from a given HDF5 group. * * @param grp The group from which to read. * @param name The name of the dataset to read. * @param type The #IO_DATA_TYPE of the attribute. * @param data (output) The attribute read from the HDF5 group (need to be * already allocated). * @param number_element Number of elements in the attribute. * * Calls #error() if an error occurs. */ void io_read_array_attribute(hid_t grp, const char* name, enum IO_DATA_TYPE type, void* data, hsize_t number_element) { /* Open attribute */ const hid_t h_attr = H5Aopen(grp, name, H5P_DEFAULT); if (h_attr < 0) error("Error while opening attribute '%s'", name); /* Get the number of elements */ hsize_t count = io_get_number_element_in_attribute(h_attr); /* Check if correct number of element */ if (count != number_element) { error( "Error found a different number of elements than expected (%llu != " "%llu) in attribute %s", (unsigned long long)count, (unsigned long long)number_element, name); } /* Read attribute */ const hid_t h_err = H5Aread(h_attr, io_hdf5_type(type), data); if (h_err < 0) error("Error while reading attribute '%s'", name); /* Cleanup */ H5Aclose(h_attr); } /** * @brief Reads the number of elements in a HDF5 dataset. * * @param dataset The dataset from which to read. * * @return The number of elements. * * Calls #error() if an error occurs. */ hsize_t io_get_number_element_in_dataset(hid_t dataset) { /* Get the dataspace */ hid_t space = H5Dget_space(dataset); if (space < 0) error("Failed to get data space"); /* Read the number of dimensions */ const int ndims = H5Sget_simple_extent_ndims(space); /* Read the dimensions */ hsize_t* dims = (hsize_t*)malloc(sizeof(hsize_t) * ndims); H5Sget_simple_extent_dims(space, dims, NULL); /* Compute number of elements */ hsize_t count = 1; for (int i = 0; i < ndims; i++) { count *= dims[i]; } /* Cleanup */ free(dims); H5Sclose(space); return count; }; /** * @brief Reads a dataset (array) from a given HDF5 group. * * @param grp The group from which to read. * @param name The name of the dataset to read. * @param type The #IO_DATA_TYPE of the attribute. * @param data (output) The attribute read from the HDF5 group (need to be * already allocated). * @param number_element Number of elements in the attribute. * * Calls #error() if an error occurs. */ void io_read_array_dataset(hid_t grp, const char* name, enum IO_DATA_TYPE type, void* data, hsize_t number_element) { /* Open dataset */ const hid_t h_dataset = H5Dopen(grp, name, H5P_DEFAULT); if (h_dataset < 0) error("Error while opening attribute '%s'", name); /* Get the number of elements */ hsize_t count = io_get_number_element_in_dataset(h_dataset); /* Check if correct number of element */ if (count != number_element) { error( "Error found a different number of elements than expected (%llu != " "%llu) in dataset %s", (unsigned long long)count, (unsigned long long)number_element, name); } /* Read dataset */ const hid_t h_err = H5Dread(h_dataset, io_hdf5_type(type), H5S_ALL, H5S_ALL, H5P_DEFAULT, data); if (h_err < 0) error("Error while reading dataset '%s'", name); /* Cleanup */ H5Dclose(h_dataset); } /** * @brief Write an attribute to a given HDF5 group. * * @param grp The group in which to write. * @param name The name of the attribute to write. * @param type The #IO_DATA_TYPE of the attribute. * @param data The attribute to write. * @param num The number of elements to write * * Calls #error() if an error occurs. */ void io_write_attribute(hid_t grp, const char* name, enum IO_DATA_TYPE type, const void* data, int num) { const hid_t h_space = H5Screate(H5S_SIMPLE); if (h_space < 0) error("Error while creating dataspace for attribute '%s'.", name); hsize_t dim[1] = {(hsize_t)num}; const hid_t h_err = H5Sset_extent_simple(h_space, 1, dim, NULL); if (h_err < 0) error("Error while changing dataspace shape for attribute '%s'.", name); const hid_t h_attr = H5Acreate1(grp, name, io_hdf5_type(type), h_space, H5P_DEFAULT); if (h_attr < 0) error("Error while creating attribute '%s'.", name); const hid_t h_err2 = H5Awrite(h_attr, io_hdf5_type(type), data); if (h_err2 < 0) error("Error while reading attribute '%s'.", name); H5Sclose(h_space); H5Aclose(h_attr); } /** * @brief Write a string as an attribute to a given HDF5 group. * * @param grp The group in which to write. * @param name The name of the attribute to write. * @param str The string to write. * @param length The length of the string * * Calls #error() if an error occurs. */ void io_writeStringAttribute(hid_t grp, const char* name, const char* str, int length) { const hid_t h_space = H5Screate(H5S_SCALAR); if (h_space < 0) error("Error while creating dataspace for attribute '%s'.", name); const hid_t h_type = H5Tcopy(H5T_C_S1); if (h_type < 0) error("Error while copying datatype 'H5T_C_S1'."); const hid_t h_err = H5Tset_size(h_type, length); if (h_err < 0) error("Error while resizing attribute type to '%i'.", length); const hid_t h_attr = H5Acreate1(grp, name, h_type, h_space, H5P_DEFAULT); if (h_attr < 0) error("Error while creating attribute '%s'.", name); const hid_t h_err2 = H5Awrite(h_attr, h_type, str); if (h_err2 < 0) error("Error while reading attribute '%s'.", name); H5Tclose(h_type); H5Sclose(h_space); H5Aclose(h_attr); } /** * @brief Writes a double value as an attribute * @param grp The group in which to write * @param name The name of the attribute * @param data The value to write */ void io_write_attribute_d(hid_t grp, const char* name, double data) { io_write_attribute(grp, name, DOUBLE, &data, 1); } /** * @brief Writes a float value as an attribute * @param grp The group in which to write * @param name The name of the attribute * @param data The value to write */ void io_write_attribute_f(hid_t grp, const char* name, float data) { io_write_attribute(grp, name, FLOAT, &data, 1); } /** * @brief Writes an int value as an attribute * @param grp The group in which to write * @param name The name of the attribute * @param data The value to write */ void io_write_attribute_i(hid_t grp, const char* name, int data) { io_write_attribute(grp, name, INT, &data, 1); } /** * @brief Writes a bool value (passed as an int) as an attribute * @param grp The group in which to write * @param name The name of the attribute * @param data The value to write */ void io_write_attribute_b(hid_t grp, const char* name, int data) { io_write_attribute(grp, name, BOOL, &data, 1); } /** * @brief Writes a long value as an attribute * @param grp The group in which to write * @param name The name of the attribute * @param data The value to write */ void io_write_attribute_l(hid_t grp, const char* name, long data) { io_write_attribute(grp, name, LONG, &data, 1); } /** * @brief Writes a long long value as an attribute * @param grp The group in which to write * @param name The name of the attribute * @param data The value to write */ void io_write_attribute_ll(hid_t grp, const char* name, long long data) { io_write_attribute(grp, name, LONGLONG, &data, 1); } /** * @brief Writes a string value as an attribute * @param grp The group in which to write * @param name The name of the attribute * @param str The string to write */ void io_write_attribute_s(hid_t grp, const char* name, const char* str) { io_writeStringAttribute(grp, name, str, strlen(str)); } /** * @brief Writes the meta-data of the run to an open hdf5 snapshot file. * * @param h_file The opened hdf5 file. * @param e The #engine containing the meta-data. * @param internal_units The system of units used internally. * @param snapshot_units The system of units used in snapshots. * @param fof Is this a FOF output? If so don't write subgrid info. */ void io_write_meta_data(hid_t h_file, const struct engine* e, const struct unit_system* internal_units, const struct unit_system* snapshot_units, const int fof) { hid_t h_grp; /* Print the code version */ io_write_code_description(h_file); /* Print the run's policy */ io_write_engine_policy(h_file, e); /* Print the physical constants */ phys_const_print_snapshot(h_file, e->physical_constants); if (!fof) { /* Print the SPH parameters */ if (e->policy & engine_policy_hydro) { h_grp = H5Gcreate(h_file, "/HydroScheme", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating SPH group"); hydro_props_print_snapshot(h_grp, e->hydro_properties); hydro_write_flavour(h_grp); mhd_write_flavour(h_grp); H5Gclose(h_grp); } /* Print the subgrid parameters */ h_grp = H5Gcreate(h_file, "/SubgridScheme", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating subgrid group"); hid_t h_grp_columns = H5Gcreate(h_grp, "NamedColumns", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp_columns < 0) error("Error while creating named columns group"); entropy_floor_write_flavour(h_grp); extra_io_write_flavour(h_grp, h_grp_columns); cooling_write_flavour(h_grp, h_grp_columns, e->cooling_func); chemistry_write_flavour(h_grp, h_grp_columns, e); tracers_write_flavour(h_grp); feedback_write_flavour(e->feedback_props, h_grp); rt_write_flavour(h_grp, h_grp_columns, e, internal_units, snapshot_units, e->rt_props); H5Gclose(h_grp); /* Print the gravity parameters */ if (e->policy & engine_policy_self_gravity) { h_grp = H5Gcreate(h_file, "/GravityScheme", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating gravity group"); gravity_props_print_snapshot(h_grp, e->gravity_properties); H5Gclose(h_grp); } /* Print the stellar parameters */ if (e->policy & engine_policy_stars) { h_grp = H5Gcreate(h_file, "/StarsScheme", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating stars group"); stars_props_print_snapshot(h_grp, h_grp_columns, e->stars_properties); H5Gclose(h_grp); } H5Gclose(h_grp_columns); } /* Print the cosmological model */ h_grp = H5Gcreate(h_file, "/Cosmology", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating cosmology group"); if (e->policy & engine_policy_cosmology) io_write_attribute_i(h_grp, "Cosmological run", 1); else io_write_attribute_i(h_grp, "Cosmological run", 0); cosmology_write_model(h_grp, e->cosmology); H5Gclose(h_grp); /* Print the runtime parameters */ h_grp = H5Gcreate(h_file, "/Parameters", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating parameters group"); parser_write_params_to_hdf5(e->parameter_file, h_grp, /*write_used=*/1); H5Gclose(h_grp); /* Print the runtime unused parameters */ h_grp = H5Gcreate(h_file, "/UnusedParameters", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating parameters group"); parser_write_params_to_hdf5(e->parameter_file, h_grp, /*write_used=*/0); H5Gclose(h_grp); /* Print the recording triggers */ h_grp = H5Gcreate(h_file, "/RecordingTriggers", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (h_grp < 0) error("Error while creating recording triggers group"); if (num_snapshot_triggers_part) { io_write_attribute(h_grp, "DesiredRecordingTimesGas", DOUBLE, e->snapshot_recording_triggers_desired_part, num_snapshot_triggers_part); io_write_attribute(h_grp, "ActualRecordingTimesGas", DOUBLE, e->snapshot_recording_triggers_part, num_snapshot_triggers_part); } if (num_snapshot_triggers_spart) { io_write_attribute(h_grp, "DesiredRecordingTimesStars", DOUBLE, e->snapshot_recording_triggers_desired_spart, num_snapshot_triggers_spart); io_write_attribute(h_grp, "ActualRecordingTimesStars", DOUBLE, e->snapshot_recording_triggers_spart, num_snapshot_triggers_spart); } if (num_snapshot_triggers_bpart) { io_write_attribute(h_grp, "DesiredRecordingTimesBlackHoles", DOUBLE, e->snapshot_recording_triggers_desired_bpart, num_snapshot_triggers_bpart); io_write_attribute(h_grp, "ActualRecordingTimesBlackHoles", DOUBLE, e->snapshot_recording_triggers_bpart, num_snapshot_triggers_bpart); } H5Gclose(h_grp); /* Print the system of Units used in the spashot */ io_write_unit_system(h_file, snapshot_units, "Units"); /* Print the system of Units used internally */ io_write_unit_system(h_file, internal_units, "InternalCodeUnits"); /* Tell the user if a conversion will be needed */ if (e->verbose) { if (units_are_equal(snapshot_units, internal_units)) { message("Snapshot and internal units match. No conversion needed."); } else { message("Conversion needed from:"); message("(Snapshot) Unit system: U_M = %e g.", snapshot_units->UnitMass_in_cgs); message("(Snapshot) Unit system: U_L = %e cm.", snapshot_units->UnitLength_in_cgs); message("(Snapshot) Unit system: U_t = %e s.", snapshot_units->UnitTime_in_cgs); message("(Snapshot) Unit system: U_I = %e A.", snapshot_units->UnitCurrent_in_cgs); message("(Snapshot) Unit system: U_T = %e K.", snapshot_units->UnitTemperature_in_cgs); message("to:"); message("(internal) Unit system: U_M = %e g.", internal_units->UnitMass_in_cgs); message("(internal) Unit system: U_L = %e cm.", internal_units->UnitLength_in_cgs); message("(internal) Unit system: U_t = %e s.", internal_units->UnitTime_in_cgs); message("(internal) Unit system: U_I = %e A.", internal_units->UnitCurrent_in_cgs); message("(internal) Unit system: U_T = %e K.", internal_units->UnitTemperature_in_cgs); } } } /** * @brief Reads the Unit System from an IC file. * * If the 'Units' group does not exist in the ICs, we will use the internal * system of units. * * @param h_file The (opened) HDF5 file from which to read. * @param ic_units The unit_system to fill. * @param internal_units The internal system of units to copy if needed. * @param mpi_rank The MPI rank we are on. */ void io_read_unit_system(hid_t h_file, struct unit_system* ic_units, const struct unit_system* internal_units, int mpi_rank) { /* First check if it exists as this is *not* required. */ const htri_t exists = H5Lexists(h_file, "/Units", H5P_DEFAULT); if (exists == 0) { if (mpi_rank == 0) message("'Units' group not found in ICs. Assuming internal unit system."); units_copy(ic_units, internal_units); return; } else if (exists < 0) { error("Serious problem with 'Units' group in ICs. H5Lexists gives %d", exists); } if (mpi_rank == 0) message("Reading IC units from ICs."); hid_t h_grp = H5Gopen(h_file, "/Units", H5P_DEFAULT); /* Ok, Read the damn thing */ io_read_attribute(h_grp, "Unit length in cgs (U_L)", DOUBLE, &ic_units->UnitLength_in_cgs); io_read_attribute(h_grp, "Unit mass in cgs (U_M)", DOUBLE, &ic_units->UnitMass_in_cgs); io_read_attribute(h_grp, "Unit time in cgs (U_t)", DOUBLE, &ic_units->UnitTime_in_cgs); io_read_attribute(h_grp, "Unit current in cgs (U_I)", DOUBLE, &ic_units->UnitCurrent_in_cgs); io_read_attribute(h_grp, "Unit temperature in cgs (U_T)", DOUBLE, &ic_units->UnitTemperature_in_cgs); /* Clean up */ H5Gclose(h_grp); } /** * @brief Writes the current Unit System * @param h_file The (opened) HDF5 file in which to write * @param us The unit_system to dump * @param groupName The name of the HDF5 group to write to */ void io_write_unit_system(hid_t h_file, const struct unit_system* us, const char* groupName) { const hid_t h_grpunit = H5Gcreate1(h_file, groupName, 0); if (h_grpunit < 0) error("Error while creating Unit System group"); io_write_attribute_d(h_grpunit, "Unit mass in cgs (U_M)", units_get_base_unit(us, UNIT_MASS)); io_write_attribute_d(h_grpunit, "Unit length in cgs (U_L)", units_get_base_unit(us, UNIT_LENGTH)); io_write_attribute_d(h_grpunit, "Unit time in cgs (U_t)", units_get_base_unit(us, UNIT_TIME)); io_write_attribute_d(h_grpunit, "Unit current in cgs (U_I)", units_get_base_unit(us, UNIT_CURRENT)); io_write_attribute_d(h_grpunit, "Unit temperature in cgs (U_T)", units_get_base_unit(us, UNIT_TEMPERATURE)); H5Gclose(h_grpunit); } /** * @brief Writes the code version to the file * @param h_file The (opened) HDF5 file in which to write */ void io_write_code_description(hid_t h_file) { const hid_t h_grpcode = H5Gcreate1(h_file, "/Code", 0); if (h_grpcode < 0) error("Error while creating code group"); io_write_attribute_s(h_grpcode, "Code", "SWIFT"); io_write_attribute_s(h_grpcode, "Code Version", package_version()); io_write_attribute_s(h_grpcode, "Compiler Name", compiler_name()); io_write_attribute_s(h_grpcode, "Compiler Version", compiler_version()); io_write_attribute_s(h_grpcode, "Git Branch", git_branch()); io_write_attribute_s(h_grpcode, "Git Revision", git_revision()); io_write_attribute_s(h_grpcode, "Git Date", git_date()); io_write_attribute_s(h_grpcode, "Configuration options", configuration_options()); io_write_attribute_s(h_grpcode, "CFLAGS", compilation_cflags()); io_write_attribute_s(h_grpcode, "HDF5 library version", hdf5_version()); io_write_attribute_s(h_grpcode, "Thread barriers", thread_barrier_version()); io_write_attribute_s(h_grpcode, "Allocators", allocator_version()); #ifdef HAVE_FFTW io_write_attribute_s(h_grpcode, "FFTW library version", fftw3_version()); #endif #ifdef HAVE_LIBGSL io_write_attribute_s(h_grpcode, "GSL library version", libgsl_version()); #endif #ifdef HAVE_SUNDIALS io_write_attribute_s(h_grpcode, "SUNDIALS library version", sundials_version()); #endif #ifdef WITH_MPI io_write_attribute_s(h_grpcode, "MPI library", mpi_version()); #ifdef HAVE_METIS io_write_attribute_s(h_grpcode, "METIS library version", metis_version()); #endif #ifdef HAVE_PARMETIS io_write_attribute_s(h_grpcode, "ParMETIS library version", parmetis_version()); #endif #else io_write_attribute_s(h_grpcode, "MPI library", "Non-MPI version of SWIFT"); #endif io_write_attribute_i(h_grpcode, "RandomSeed", SWIFT_RANDOM_SEED_XOR); H5Gclose(h_grpcode); } /** * @brief Write the #engine policy to the file. * @param h_file File to write to. * @param e The #engine to read the policy from. */ void io_write_engine_policy(hid_t h_file, const struct engine* e) { const hid_t h_grp = H5Gcreate1(h_file, "/Policy", 0); if (h_grp < 0) error("Error while creating policy group"); for (int i = 1; i < engine_maxpolicy; ++i) if (e->policy & (1 << i)) io_write_attribute_i(h_grp, engine_policy_names[i + 1], 1); else io_write_attribute_i(h_grp, engine_policy_names[i + 1], 0); H5Gclose(h_grp); } void io_write_part_type_names(hid_t h_grp) { io_write_attribute_i(h_grp, "NumPartTypes", swift_type_count); /* Create an array of partcle type names */ const int name_length = 128; char names[swift_type_count][name_length]; for (int i = 0; i < swift_type_count; ++i) strcpy(names[i], part_type_names[i]); hsize_t dims[1] = {swift_type_count}; hid_t type = H5Tcopy(H5T_C_S1); H5Tset_size(type, name_length); hid_t space = H5Screate_simple(1, dims, NULL); hid_t dset = H5Dcreate(h_grp, "PartTypeNames", type, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); H5Dwrite(dset, type, H5S_ALL, H5S_ALL, H5P_DEFAULT, names[0]); H5Dclose(dset); H5Tclose(type); H5Sclose(space); } #endif /* HAVE_HDF5 */ /** * @brief Returns the memory size of the data type */ size_t io_sizeof_type(enum IO_DATA_TYPE type) { switch (type) { case INT: return sizeof(int); case UINT8: return sizeof(uint8_t); case UINT: return sizeof(unsigned int); case UINT64: return sizeof(uint64_t); case LONG: return sizeof(long); case ULONG: return sizeof(unsigned long); case LONGLONG: return sizeof(long long); case ULONGLONG: return sizeof(unsigned long long); case FLOAT: return sizeof(float); case DOUBLE: return sizeof(double); case CHAR: return sizeof(char); case SIZE_T: return sizeof(size_t); default: error("Unknown type"); return 0; } } void io_prepare_dm_gparts_mapper(void* restrict data, int Ndm, void* dummy) { struct gpart* restrict gparts = (struct gpart*)data; /* Let's give all these gparts a negative id */ for (int i = 0; i < Ndm; ++i) { /* Negative ids are not allowed */ if (gparts[i].id_or_neg_offset < 0) error("Negative ID for DM particle %i: ID=%lld", i, gparts[i].id_or_neg_offset); /* Set gpart type */ gparts[i].type = swift_type_dark_matter; } } /** * @brief Prepare the DM particles (in gparts) read in for the addition of the * other particle types * * This function assumes that the DM particles are all at the start of the * gparts array * * @param tp The current #threadpool. * @param gparts The array of #gpart freshly read in. * @param Ndm The number of DM particles read in. */ void io_prepare_dm_gparts(struct threadpool* tp, struct gpart* const gparts, size_t Ndm) { threadpool_map(tp, io_prepare_dm_gparts_mapper, gparts, Ndm, sizeof(struct gpart), threadpool_auto_chunk_size, NULL); } void io_prepare_dm_background_gparts_mapper(void* restrict data, int Ndm, void* dummy) { struct gpart* restrict gparts = (struct gpart*)data; /* Let's give all these gparts a negative id */ for (int i = 0; i < Ndm; ++i) { /* Negative ids are not allowed */ if (gparts[i].id_or_neg_offset < 0) error("Negative ID for DM particle %i: ID=%lld", i, gparts[i].id_or_neg_offset); /* Set gpart type */ gparts[i].type = swift_type_dark_matter_background; } } /** * @brief Prepare the DM backgorund particles (in gparts) read in * for the addition of the other particle types * * This function assumes that the DM particles are all at the start of the * gparts array and that the background particles directly follow them. * * @param tp The current #threadpool. * @param gparts The array of #gpart freshly read in. * @param Ndm The number of DM particles read in. */ void io_prepare_dm_background_gparts(struct threadpool* tp, struct gpart* const gparts, size_t Ndm) { threadpool_map(tp, io_prepare_dm_background_gparts_mapper, gparts, Ndm, sizeof(struct gpart), threadpool_auto_chunk_size, NULL); } void io_prepare_dm_neutrino_gparts_mapper(void* restrict data, int Ndm, void* dummy) { struct gpart* restrict gparts = (struct gpart*)data; /* Let's give all these gparts a negative id */ for (int i = 0; i < Ndm; ++i) { /* Negative ids are not allowed */ if (gparts[i].id_or_neg_offset < 0) error("Negative ID for DM particle %i: ID=%lld", i, gparts[i].id_or_neg_offset); /* Set gpart type */ gparts[i].type = swift_type_neutrino; } } /** * @brief Prepare the neutrino dark matter particles (in gparts) read in * for the addition of the other particle types * * This function assumes that the DM & background DM particles are all at the * start of the gparts array and that the neutrinos directly follow them. * * @param tp The current #threadpool. * @param gparts The array of #gpart freshly read in. * @param Ndm The number of DM particles read in. */ void io_prepare_dm_neutrino_gparts(struct threadpool* tp, struct gpart* const gparts, size_t Ndm) { threadpool_map(tp, io_prepare_dm_neutrino_gparts_mapper, gparts, Ndm, sizeof(struct gpart), threadpool_auto_chunk_size, NULL); } struct duplication_data { struct part* parts; struct gpart* gparts; struct spart* sparts; struct bpart* bparts; struct sink* sinks; int Ndm; int Ngas; int Nstars; int Nblackholes; int Nsinks; }; void io_duplicate_hydro_gparts_mapper(void* restrict data, int Ngas, void* restrict extra_data) { struct duplication_data* temp = (struct duplication_data*)extra_data; const int Ndm = temp->Ndm; struct part* parts = (struct part*)data; const ptrdiff_t offset = parts - temp->parts; struct gpart* gparts = temp->gparts + offset; for (int i = 0; i < Ngas; ++i) { /* Duplicate the crucial information */ gparts[i + Ndm].x[0] = parts[i].x[0]; gparts[i + Ndm].x[1] = parts[i].x[1]; gparts[i + Ndm].x[2] = parts[i].x[2]; gparts[i + Ndm].v_full[0] = parts[i].v[0]; gparts[i + Ndm].v_full[1] = parts[i].v[1]; gparts[i + Ndm].v_full[2] = parts[i].v[2]; gparts[i + Ndm].mass = hydro_get_mass(&parts[i]); /* Set gpart type */ gparts[i + Ndm].type = swift_type_gas; /* Link the particles */ gparts[i + Ndm].id_or_neg_offset = -(long long)(offset + i); parts[i].gpart = &gparts[i + Ndm]; } } /** * @brief Copy every #part into the corresponding #gpart and link them. * * This function assumes that the DM particles are all at the start of the * gparts array and adds the hydro particles afterwards * * @param tp The current #threadpool. * @param parts The array of #part freshly read in. * @param gparts The array of #gpart freshly read in with all the DM particles * at the start * @param Ngas The number of gas particles read in. * @param Ndm The number of DM particles read in. */ void io_duplicate_hydro_gparts(struct threadpool* tp, struct part* const parts, struct gpart* const gparts, size_t Ngas, size_t Ndm) { struct duplication_data data; data.parts = parts; data.gparts = gparts; data.Ndm = Ndm; threadpool_map(tp, io_duplicate_hydro_gparts_mapper, parts, Ngas, sizeof(struct part), threadpool_auto_chunk_size, &data); } void io_duplicate_stars_gparts_mapper(void* restrict data, int Nstars, void* restrict extra_data) { struct duplication_data* temp = (struct duplication_data*)extra_data; const int Ndm = temp->Ndm; struct spart* sparts = (struct spart*)data; const ptrdiff_t offset = sparts - temp->sparts; struct gpart* gparts = temp->gparts + offset; for (int i = 0; i < Nstars; ++i) { /* Duplicate the crucial information */ gparts[i + Ndm].x[0] = sparts[i].x[0]; gparts[i + Ndm].x[1] = sparts[i].x[1]; gparts[i + Ndm].x[2] = sparts[i].x[2]; gparts[i + Ndm].v_full[0] = sparts[i].v[0]; gparts[i + Ndm].v_full[1] = sparts[i].v[1]; gparts[i + Ndm].v_full[2] = sparts[i].v[2]; gparts[i + Ndm].mass = sparts[i].mass; /* Set gpart type */ gparts[i + Ndm].type = swift_type_stars; /* Link the particles */ gparts[i + Ndm].id_or_neg_offset = -(long long)(offset + i); sparts[i].gpart = &gparts[i + Ndm]; } } /** * @brief Copy every #spart into the corresponding #gpart and link them. * * This function assumes that the DM particles and gas particles are all at * the start of the gparts array and adds the star particles afterwards * * @param tp The current #threadpool. * @param sparts The array of #spart freshly read in. * @param gparts The array of #gpart freshly read in with all the DM and gas * particles at the start. * @param Nstars The number of stars particles read in. * @param Ndm The number of DM and gas particles read in. */ void io_duplicate_stars_gparts(struct threadpool* tp, struct spart* const sparts, struct gpart* const gparts, size_t Nstars, size_t Ndm) { struct duplication_data data; data.gparts = gparts; data.sparts = sparts; data.Ndm = Ndm; threadpool_map(tp, io_duplicate_stars_gparts_mapper, sparts, Nstars, sizeof(struct spart), threadpool_auto_chunk_size, &data); } void io_duplicate_sinks_gparts_mapper(void* restrict data, int Nsinks, void* restrict extra_data) { struct duplication_data* temp = (struct duplication_data*)extra_data; const int Ndm = temp->Ndm; struct sink* sinks = (struct sink*)data; const ptrdiff_t offset = sinks - temp->sinks; struct gpart* gparts = temp->gparts + offset; for (int i = 0; i < Nsinks; ++i) { /* Duplicate the crucial information */ gparts[i + Ndm].x[0] = sinks[i].x[0]; gparts[i + Ndm].x[1] = sinks[i].x[1]; gparts[i + Ndm].x[2] = sinks[i].x[2]; gparts[i + Ndm].v_full[0] = sinks[i].v[0]; gparts[i + Ndm].v_full[1] = sinks[i].v[1]; gparts[i + Ndm].v_full[2] = sinks[i].v[2]; gparts[i + Ndm].mass = sinks[i].mass; /* Set gpart type */ gparts[i + Ndm].type = swift_type_sink; /* Link the particles */ gparts[i + Ndm].id_or_neg_offset = -(long long)(offset + i); sinks[i].gpart = &gparts[i + Ndm]; } } /** * @brief Copy every #sink into the corresponding #gpart and link them. * * This function assumes that the DM particles, gas particles and star particles * are all at the start of the gparts array and adds the sinks particles * afterwards * * @param tp The current #threadpool. * @param sinks The array of #sink freshly read in. * @param gparts The array of #gpart freshly read in with all the DM, gas * and star particles at the start. * @param Nsinks The number of sink particles read in. * @param Ndm The number of DM, gas and star particles read in. */ void io_duplicate_sinks_gparts(struct threadpool* tp, struct sink* const sinks, struct gpart* const gparts, size_t Nsinks, size_t Ndm) { struct duplication_data data; data.gparts = gparts; data.sinks = sinks; data.Ndm = Ndm; threadpool_map(tp, io_duplicate_sinks_gparts_mapper, sinks, Nsinks, sizeof(struct sink), threadpool_auto_chunk_size, &data); } void io_duplicate_black_holes_gparts_mapper(void* restrict data, int Nblackholes, void* restrict extra_data) { struct duplication_data* temp = (struct duplication_data*)extra_data; const int Ndm = temp->Ndm; struct bpart* bparts = (struct bpart*)data; const ptrdiff_t offset = bparts - temp->bparts; struct gpart* gparts = temp->gparts + offset; for (int i = 0; i < Nblackholes; ++i) { /* Duplicate the crucial information */ gparts[i + Ndm].x[0] = bparts[i].x[0]; gparts[i + Ndm].x[1] = bparts[i].x[1]; gparts[i + Ndm].x[2] = bparts[i].x[2]; gparts[i + Ndm].v_full[0] = bparts[i].v[0]; gparts[i + Ndm].v_full[1] = bparts[i].v[1]; gparts[i + Ndm].v_full[2] = bparts[i].v[2]; gparts[i + Ndm].mass = bparts[i].mass; /* Set gpart type */ gparts[i + Ndm].type = swift_type_black_hole; /* Link the particles */ gparts[i + Ndm].id_or_neg_offset = -(long long)(offset + i); bparts[i].gpart = &gparts[i + Ndm]; } } /** * @brief Copy every #bpart into the corresponding #gpart and link them. * * This function assumes that the DM particles, gas particles and star particles * are all at the start of the gparts array and adds the black hole particles * afterwards * * @param tp The current #threadpool. * @param bparts The array of #bpart freshly read in. * @param gparts The array of #gpart freshly read in with all the DM, gas * and star particles at the start. * @param Nblackholes The number of blackholes particles read in. * @param Ndm The number of DM, gas and star particles read in. */ void io_duplicate_black_holes_gparts(struct threadpool* tp, struct bpart* const bparts, struct gpart* const gparts, size_t Nblackholes, size_t Ndm) { struct duplication_data data; data.gparts = gparts; data.bparts = bparts; data.Ndm = Ndm; threadpool_map(tp, io_duplicate_black_holes_gparts_mapper, bparts, Nblackholes, sizeof(struct bpart), threadpool_auto_chunk_size, &data); } /** * @brief Copy every non-inhibited #part into the parts_written array. * * Also takes into account possible downsampling. * * @param parts The array of #part containing all particles. * @param xparts The array of #xpart containing all particles. * @param parts_written The array of #part to fill with particles we want to * write. * @param xparts_written The array of #xpart to fill with particles we want to * write. * @param subsample Are we subsampling the particles? * @param subsample_ratio The fraction of particles to write if subsampling. * @param snap_num The snapshot ID (used to seed the RNG when sub-sampling). * @param Nparts The total number of #part. * @param Nparts_written The total number of #part to write. */ void io_collect_parts_to_write(const struct part* restrict parts, const struct xpart* restrict xparts, struct part* restrict parts_written, struct xpart* restrict xparts_written, const int subsample, const float subsample_ratio, const int snap_num, const size_t Nparts, const size_t Nparts_written) { size_t count = 0; /* Loop over all parts */ for (size_t i = 0; i < Nparts; ++i) { /* And collect the ones that have not been removed */ if (parts[i].time_bin != time_bin_inhibited && parts[i].time_bin != time_bin_not_created) { /* When subsampling, select particles at random */ if (subsample) { const float r = random_unit_interval(parts[i].id, snap_num, random_number_snapshot_sampling); if (r > subsample_ratio) continue; } parts_written[count] = parts[i]; xparts_written[count] = xparts[i]; count++; } } /* Check that everything is fine */ if (count != Nparts_written) error("Collected the wrong number of particles (%zu vs. %zu expected)", count, Nparts_written); } /** * @brief Copy every non-inhibited #spart into the sparts_written array. * * Also takes into account possible downsampling. * * @param sparts The array of #spart containing all particles. * @param sparts_written The array of #spart to fill with particles we want to * write. * @param subsample Are we subsampling the particles? * @param subsample_ratio The fraction of particles to write if subsampling. * @param snap_num The snapshot ID (used to seed the RNG when sub-sampling). * @param Nsparts The total number of #part. * @param Nsparts_written The total number of #part to write. */ void io_collect_sparts_to_write(const struct spart* restrict sparts, struct spart* restrict sparts_written, const int subsample, const float subsample_ratio, const int snap_num, const size_t Nsparts, const size_t Nsparts_written) { size_t count = 0; /* Loop over all parts */ for (size_t i = 0; i < Nsparts; ++i) { /* And collect the ones that have not been removed */ if (sparts[i].time_bin != time_bin_inhibited && sparts[i].time_bin != time_bin_not_created) { /* When subsampling, select particles at random */ if (subsample) { const float r = random_unit_interval(sparts[i].id, snap_num, random_number_snapshot_sampling); if (r > subsample_ratio) continue; } sparts_written[count] = sparts[i]; count++; } } /* Check that everything is fine */ if (count != Nsparts_written) error("Collected the wrong number of s-particles (%zu vs. %zu expected)", count, Nsparts_written); } /** * @brief Copy every non-inhibited #sink into the sinks_written array. * * Also takes into account possible downsampling. * * @param sinks The array of #sink containing all particles. * @param sinks_written The array of #sink to fill with particles we want to * write. * @param subsample Are we subsampling the particles? * @param subsample_ratio The fraction of particles to write if subsampling. * @param snap_num The snapshot ID (used to seed the RNG when sub-sampling). * @param Nsinks The total number of #sink. * @param Nsinks_written The total number of #sink to write. */ void io_collect_sinks_to_write(const struct sink* restrict sinks, struct sink* restrict sinks_written, const int subsample, const float subsample_ratio, const int snap_num, const size_t Nsinks, const size_t Nsinks_written) { size_t count = 0; /* Loop over all parts */ for (size_t i = 0; i < Nsinks; ++i) { /* And collect the ones that have not been removed */ if (sinks[i].time_bin != time_bin_inhibited && sinks[i].time_bin != time_bin_not_created) { /* When subsampling, select particles at random */ if (subsample) { const float r = random_unit_interval(sinks[i].id, snap_num, random_number_snapshot_sampling); if (r > subsample_ratio) continue; } sinks_written[count] = sinks[i]; count++; } } /* Check that everything is fine */ if (count != Nsinks_written) error("Collected the wrong number of sink-particles (%zu vs. %zu expected)", count, Nsinks_written); } /** * @brief Copy every non-inhibited #bpart into the bparts_written array. * * Also takes into account possible downsampling. * * @param bparts The array of #bpart containing all particles. * @param bparts_written The array of #bpart to fill with particles we want to * write. * @param subsample Are we subsampling the particles? * @param subsample_ratio The fraction of particles to write if subsampling. * @param snap_num The snapshot ID (used to seed the RNG when sub-sampling). * @param Nbparts The total number of #part. * @param Nbparts_written The total number of #part to write. */ void io_collect_bparts_to_write(const struct bpart* restrict bparts, struct bpart* restrict bparts_written, const int subsample, const float subsample_ratio, const int snap_num, const size_t Nbparts, const size_t Nbparts_written) { size_t count = 0; /* Loop over all parts */ for (size_t i = 0; i < Nbparts; ++i) { /* And collect the ones that have not been removed */ if (bparts[i].time_bin != time_bin_inhibited && bparts[i].time_bin != time_bin_not_created) { /* When subsampling, select particles at random */ if (subsample) { const float r = random_unit_interval(bparts[i].id, snap_num, random_number_snapshot_sampling); if (r > subsample_ratio) continue; } bparts_written[count] = bparts[i]; count++; } } /* Check that everything is fine */ if (count != Nbparts_written) error("Collected the wrong number of s-particles (%zu vs. %zu expected)", count, Nbparts_written); } /** * @brief Copy every non-inhibited regulat DM #gpart into the gparts_written * array. * * Also takes into account possible downsampling. * * @param gparts The array of #gpart containing all particles. * @param vr_data The array of gpart-related VELOCIraptor output. * @param gparts_written The array of #gpart to fill with particles we want to * write. * @param vr_data_written The array of gpart-related VELOCIraptor with particles * we want to write. * @param subsample Are we subsampling the particles? * @param subsample_ratio The fraction of particles to write if subsampling. * @param snap_num The snapshot ID (used to seed the RNG when sub-sampling). * @param Ngparts The total number of #part. * @param Ngparts_written The total number of #part to write. * @param with_stf Are we running with STF? i.e. do we want to collect vr data? */ void io_collect_gparts_to_write( const struct gpart* restrict gparts, const struct velociraptor_gpart_data* restrict vr_data, struct gpart* restrict gparts_written, struct velociraptor_gpart_data* restrict vr_data_written, const int subsample, const float subsample_ratio, const int snap_num, const size_t Ngparts, const size_t Ngparts_written, const int with_stf) { size_t count = 0; /* Loop over all parts */ for (size_t i = 0; i < Ngparts; ++i) { /* And collect the ones that have not been removed */ if ((gparts[i].time_bin != time_bin_inhibited) && (gparts[i].time_bin != time_bin_not_created) && (gparts[i].type == swift_type_dark_matter)) { /* When subsampling, select particles at random */ if (subsample) { const float r = random_unit_interval(gparts[i].id_or_neg_offset, snap_num, random_number_snapshot_sampling); if (r > subsample_ratio) continue; } if (with_stf) vr_data_written[count] = vr_data[i]; gparts_written[count] = gparts[i]; count++; } } /* Check that everything is fine */ if (count != Ngparts_written) error("Collected the wrong number of g-particles (%zu vs. %zu expected)", count, Ngparts_written); } /** * @brief Copy every non-inhibited background DM #gpart into the gparts_written * array. * * Also takes into account possible downsampling. * * @param gparts The array of #gpart containing all particles. * @param vr_data The array of gpart-related VELOCIraptor output. * @param gparts_written The array of #gpart to fill with particles we want to * write. * @param vr_data_written The array of gpart-related VELOCIraptor with particles * we want to write. * @param subsample Are we subsampling the particles? * @param subsample_ratio The fraction of particles to write if subsampling. * @param snap_num The snapshot ID (used to seed the RNG when sub-sampling). * @param Ngparts The total number of #part. * @param Ngparts_written The total number of #part to write. * @param with_stf Are we running with STF? i.e. do we want to collect vr data? */ void io_collect_gparts_background_to_write( const struct gpart* restrict gparts, const struct velociraptor_gpart_data* restrict vr_data, struct gpart* restrict gparts_written, struct velociraptor_gpart_data* restrict vr_data_written, const int subsample, const float subsample_ratio, const int snap_num, const size_t Ngparts, const size_t Ngparts_written, const int with_stf) { size_t count = 0; /* Loop over all parts */ for (size_t i = 0; i < Ngparts; ++i) { /* And collect the ones that have not been removed */ if ((gparts[i].time_bin != time_bin_inhibited) && (gparts[i].time_bin != time_bin_not_created) && (gparts[i].type == swift_type_dark_matter_background)) { /* When subsampling, select particles at random */ if (subsample) { const float r = random_unit_interval(gparts[i].id_or_neg_offset, snap_num, random_number_snapshot_sampling); if (r > subsample_ratio) continue; } if (with_stf) vr_data_written[count] = vr_data[i]; gparts_written[count] = gparts[i]; count++; } } /* Check that everything is fine */ if (count != Ngparts_written) error("Collected the wrong number of g-particles (%zu vs. %zu expected)", count, Ngparts_written); } /** * @brief Copy every non-inhibited neutrino DM #gpart into the gparts_written * array. * * Also takes into account possible downsampling. * * @param gparts The array of #gpart containing all particles. * @param vr_data The array of gpart-related VELOCIraptor output. * @param gparts_written The array of #gpart to fill with particles we want to * write. * @param vr_data_written The array of gpart-related VELOCIraptor with particles * we want to write. * @param subsample Are we subsampling the particles? * @param subsample_ratio The fraction of particles to write if subsampling. * @param snap_num The snapshot ID (used to seed the RNG when sub-sampling). * @param Ngparts The total number of #part. * @param Ngparts_written The total number of #part to write. * @param with_stf Are we running with STF? i.e. do we want to collect vr data? */ void io_collect_gparts_neutrino_to_write( const struct gpart* restrict gparts, const struct velociraptor_gpart_data* restrict vr_data, struct gpart* restrict gparts_written, struct velociraptor_gpart_data* restrict vr_data_written, const int subsample, const float subsample_ratio, const int snap_num, const size_t Ngparts, const size_t Ngparts_written, const int with_stf) { size_t count = 0; /* Loop over all parts */ for (size_t i = 0; i < Ngparts; ++i) { /* And collect the ones that have not been removed */ if ((gparts[i].time_bin != time_bin_inhibited) && (gparts[i].time_bin != time_bin_not_created) && (gparts[i].type == swift_type_neutrino)) { /* When subsampling, select particles at random */ if (subsample) { const float r = random_unit_interval(gparts[i].id_or_neg_offset, snap_num, random_number_snapshot_sampling); if (r > subsample_ratio) continue; } if (with_stf) vr_data_written[count] = vr_data[i]; gparts_written[count] = gparts[i]; count++; } } /* Check that everything is fine */ if (count != Ngparts_written) error("Collected the wrong number of g-particles (%zu vs. %zu expected)", count, Ngparts_written); } /** * @brief Create the subdirectory for snapshots if the user demanded one. * * Does nothing if the directory is '.' * * @param dirname The name of the directory. */ void io_make_snapshot_subdir(const char* dirname) { if (strcmp(dirname, ".") != 0 && strnlen(dirname, FILENAME_BUFFER_SIZE) > 0) { safe_checkdir(dirname, /*create=*/1); } } /** * @brief Construct the file names for a single-file hdf5 snapshots and * corresponding XMF descriptor file. * * The XMF file always uses the default basename. * * @param filename (return) The file name of the hdf5 snapshot. * @param xmf_filename (return) The file name of the associated XMF file. * @param use_time_label Are we using time labels for the snapshot indices? * @param snapshots_invoke_stf Are we calling STF when dumping a snapshot? * @param time The current simulation time. * @param stf_count The counter of STF outputs. * @param snap_count The counter of snapshot outputs. * @param default_subdir The common part of the default sub-directory names. * @param subdir The sub-directory in which the snapshots are written. * @param default_basename The common part of the default snapshot names. * @param basename The common part of the snapshot names. */ void io_get_snapshot_filename(char filename[FILENAME_BUFFER_SIZE], char xmf_filename[FILENAME_BUFFER_SIZE], const struct output_list* output_list, const int snapshots_invoke_stf, const int stf_count, const int snap_count, const char* default_subdir, const char* subdir, const char* default_basename, const char* basename) { int snap_number = -1; int number_digits = -1; if (output_list && output_list->alternative_labels_on) { snap_number = output_list->snapshot_labels[snap_count]; number_digits = 0; } else if (snapshots_invoke_stf) { snap_number = stf_count; number_digits = 4; } else { snap_number = snap_count; number_digits = 4; } /* Are we using a sub-dir? */ if (strlen(subdir) > 0) { sprintf(filename, "%s/%s_%0*d.hdf5", subdir, basename, number_digits, snap_number); sprintf(xmf_filename, "%s/%s.xmf", default_subdir, default_basename); } else { sprintf(filename, "%s_%0*d.hdf5", basename, number_digits, snap_number); sprintf(xmf_filename, "%s.xmf", default_basename); } } /** * @brief Set all ParticleIDs for each gpart to 1. * * Function is called when remap_ids is 1. * * Note only the gparts IDs have to be set to 1, as other parttypes can survive * as ParticleIDs=0 until the remapping routine. * * @param gparts The array of loaded gparts. * @param Ngparts Number of loaded gparts. */ void io_set_ids_to_one(struct gpart* gparts, const size_t Ngparts) { for (size_t i = 0; i < Ngparts; i++) gparts[i].id_or_neg_offset = 1; } /** * @brief Select the fields to write to snapshots for the gas particles. * * @param parts The #part's * @param xparts The #xpart's * @param with_cosmology Are we running with cosmology switched on? * @param with_cooling Are we running with cooling switched on? * @param with_temperature Are we running with temperature switched on? * @param with_fof Are we running FoF? * @param with_stf Are we running with structure finding? * @param with_rt Are we running with radiative transfer? * @param e The #engine (to access scheme properties). * @param num_fields (return) The number of fields to write. * @param list (return) The list of fields to write. */ void io_select_hydro_fields(const struct part* const parts, const struct xpart* const xparts, const int with_cosmology, const int with_cooling, const int with_temperature, const int with_fof, const int with_stf, const int with_rt, const struct engine* const e, int* const num_fields, struct io_props* const list) { hydro_write_particles(parts, xparts, list, num_fields); *num_fields += mhd_write_particles(parts, xparts, list + *num_fields); *num_fields += particle_splitting_write_particles( parts, xparts, list + *num_fields, with_cosmology); *num_fields += chemistry_write_particles(parts, xparts, list + *num_fields, with_cosmology); if (with_cooling || with_temperature) { *num_fields += cooling_write_particles(parts, xparts, list + *num_fields); } if (with_fof) { *num_fields += fof_write_parts(parts, xparts, list + *num_fields); } if (with_stf) { *num_fields += velociraptor_write_parts(parts, xparts, list + *num_fields); } *num_fields += tracers_write_particles(parts, xparts, list + *num_fields, with_cosmology); *num_fields += star_formation_write_particles(parts, xparts, list + *num_fields); if (with_rt) { *num_fields += rt_write_particles(parts, list + *num_fields); } *num_fields += extra_io_write_particles(parts, xparts, list + *num_fields, with_cosmology); } /** * @brief Select the fields to write to snapshots for the DM particles. * * @param gparts The #gpart's * @param with_fof Are we running FoF? * @param with_stf Are we running with structure finding? * @param e The #engine (to access scheme properties). * @param num_fields (return) The number of fields to write. * @param list (return) The list of fields to write. */ void io_select_dm_fields(const struct gpart* const gparts, const struct velociraptor_gpart_data* gpart_group_data, const int with_fof, const int with_stf, const struct engine* const e, int* const num_fields, struct io_props* const list) { darkmatter_write_particles(gparts, list, num_fields); if (with_fof) { *num_fields += fof_write_gparts(gparts, list + *num_fields); } if (with_stf) { *num_fields += velociraptor_write_gparts(gpart_group_data, list + *num_fields); } } /** * @brief Select the fields to write to snapshots for the neutrino particles. * * @param gparts The #gpart's * @param with_fof Are we running FoF? * @param with_stf Are we running with structure finding? * @param e The #engine (to access scheme properties). * @param num_fields (return) The number of fields to write. * @param list (return) The list of fields to write. */ void io_select_neutrino_fields( const struct gpart* const gparts, const struct velociraptor_gpart_data* gpart_group_data, const int with_fof, const int with_stf, const struct engine* const e, int* const num_fields, struct io_props* const list) { darkmatter_write_particles(gparts, list, num_fields); *num_fields += neutrino_write_particles(gparts, list + *num_fields); } /** * @brief Select the fields to write to snapshots for the sink particles. * * @param sinks The #sink's * @param with_cosmology Are we running with cosmology switched on? * @param with_fof Are we running FoF? * @param with_stf Are we running with structure finding? * @param e The #engine (to access scheme properties). * @param num_fields (return) The number of fields to write. * @param list (return) The list of fields to write. */ void io_select_sink_fields(const struct sink* const sinks, const int with_cosmology, const int with_fof, const int with_stf, const struct engine* const e, int* const num_fields, struct io_props* const list) { sink_write_particles(sinks, list, num_fields, with_cosmology); *num_fields += chemistry_write_sinkparticles(sinks, list + *num_fields); } /** * @brief Select the fields to write to snapshots for the star particles. * * @param sparts The #spart's * @param with_cosmology Are we running with cosmology switched on? * @param with_fof Are we running FoF? * @param with_stf Are we running with structure finding? * @param with_rt Are we running with radiative transfer? * @param e The #engine (to access scheme properties). * @param num_fields (return) The number of fields to write. * @param list (return) The list of fields to write. */ void io_select_star_fields(const struct spart* const sparts, const int with_cosmology, const int with_fof, const int with_stf, const int with_rt, const struct engine* const e, int* const num_fields, struct io_props* const list) { stars_write_particles(sparts, list, num_fields, with_cosmology); *num_fields += particle_splitting_write_sparticles(sparts, list + *num_fields); *num_fields += chemistry_write_sparticles(sparts, list + *num_fields); *num_fields += tracers_write_sparticles(sparts, list + *num_fields, with_cosmology); *num_fields += star_formation_write_sparticles(sparts, list + *num_fields); if (with_fof) { *num_fields += fof_write_sparts(sparts, list + *num_fields); } if (with_stf) { *num_fields += velociraptor_write_sparts(sparts, list + *num_fields); } if (with_rt) { *num_fields += rt_write_stars(sparts, list + *num_fields); } *num_fields += extra_io_write_sparticles(sparts, list + *num_fields, with_cosmology); } /** * @brief Select the fields to write to snapshots for the BH particles. * * @param bparts The #bpart's * @param with_cosmology Are we running with cosmology switched on? * @param with_fof Are we running FoF? * @param with_stf Are we running with structure finding? * @param e The #engine (to access scheme properties). * @param num_fields (return) The number of fields to write. * @param list (return) The list of fields to write. */ void io_select_bh_fields(const struct bpart* const bparts, const int with_cosmology, const int with_fof, const int with_stf, const struct engine* const e, int* const num_fields, struct io_props* const list) { black_holes_write_particles(bparts, list, num_fields, with_cosmology); *num_fields += particle_splitting_write_bparticles(bparts, list + *num_fields); *num_fields += chemistry_write_bparticles(bparts, list + *num_fields); *num_fields += tracers_write_bparticles(bparts, list + *num_fields, with_cosmology); if (with_fof) { *num_fields += fof_write_bparts(bparts, list + *num_fields); } if (with_stf) { *num_fields += velociraptor_write_bparts(bparts, list + *num_fields); } *num_fields += extra_io_write_bparticles(bparts, list + *num_fields, with_cosmology); }