/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 Matthieu Schaller (schaller@strw.leidenuniv.nl)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_CHEMISTRY_EAGLE_H
#define SWIFT_CHEMISTRY_EAGLE_H
/**
* @file src/chemistry/EAGLE/chemistry.h
* @brief Empty infrastructure for the cases without chemistry function
*/
/* Some standard headers. */
#include
#include
/* Local includes. */
#include "chemistry_struct.h"
#include "error.h"
#include "hydro.h"
#include "parser.h"
#include "part.h"
#include "physical_constants.h"
#include "units.h"
/**
* @brief Return a string containing the name of a given #chemistry_element.
*/
__attribute__((always_inline)) INLINE static const char*
chemistry_get_element_name(enum chemistry_element elem) {
static const char* chemistry_element_names[chemistry_element_count] = {
"Hydrogen", "Helium", "Carbon", "Nitrogen", "Oxygen",
"Neon", "Magnesium", "Silicon", "Iron"};
return chemistry_element_names[elem];
}
/**
* @brief Prepares a particle for the smooth metal calculation.
*
* Zeroes all the relevant arrays in preparation for the sums taking place in
* the various smooth metallicity tasks
*
* @param p The particle to act upon
* @param cd #chemistry_global_data containing chemistry informations.
*/
__attribute__((always_inline)) INLINE static void chemistry_init_part(
struct part* restrict p, const struct chemistry_global_data* cd) {
struct chemistry_part_data* cpd = &p->chemistry_data;
for (int i = 0; i < chemistry_element_count; i++) {
cpd->smoothed_metal_mass_fraction[i] = 0.f;
}
cpd->smoothed_metal_mass_fraction_total = 0.f;
cpd->smoothed_iron_mass_fraction_from_SNIa = 0.f;
}
/**
* @brief Finishes the smooth metal calculation.
*
* Multiplies the smoothed metallicity and number of neighbours by the
* appropiate constants and add the self-contribution term.
*
* This function requires the #hydro_end_density to have been called.
*
* @param p The particle to act upon.
* @param cd #chemistry_global_data containing chemistry informations.
* @param cosmo The current cosmological model.
*/
__attribute__((always_inline)) INLINE static void chemistry_end_density(
struct part* restrict p, const struct chemistry_global_data* cd,
const struct cosmology* cosmo) {
/* Some smoothing length multiples. */
const float h = p->h;
const float h_inv = 1.0f / h; /* 1/h */
const float rho = hydro_get_comoving_density(p);
const float factor = pow_dimension(h_inv) / rho; /* 1 / (h^d * rho) */
const float m = hydro_get_mass(p);
struct chemistry_part_data* cpd = &p->chemistry_data;
for (int i = 0; i < chemistry_element_count; i++) {
/* Final operation on the density (add self-contribution). */
cpd->smoothed_metal_mass_fraction[i] +=
m * cpd->metal_mass_fraction[i] * kernel_root;
/* Finish the calculation by inserting the missing h-factors */
cpd->smoothed_metal_mass_fraction[i] *= factor;
}
/* Smooth mass fraction of all metals */
cpd->smoothed_metal_mass_fraction_total +=
m * cpd->metal_mass_fraction_total * kernel_root;
cpd->smoothed_metal_mass_fraction_total *= factor;
/* Smooth iron mass fraction from SNIa */
cpd->smoothed_iron_mass_fraction_from_SNIa +=
m * cpd->iron_mass_fraction_from_SNIa * kernel_root;
cpd->smoothed_iron_mass_fraction_from_SNIa *= factor;
}
/**
* @brief Sets all particle fields to sensible values when the #part has 0 ngbs.
*
* @param p The particle to act upon
* @param xp The extended particle data to act upon
* @param cd #chemistry_global_data containing chemistry informations.
* @param cosmo The current cosmological model.
*/
__attribute__((always_inline)) INLINE static void
chemistry_part_has_no_neighbours(struct part* restrict p,
struct xpart* restrict xp,
const struct chemistry_global_data* cd,
const struct cosmology* cosmo) {
/* Just make all the smoothed fields default to the un-smoothed values */
struct chemistry_part_data* cpd = &p->chemistry_data;
/* Total metal mass fraction */
cpd->smoothed_metal_mass_fraction_total = cpd->metal_mass_fraction_total;
/* Iron frac from SNIa */
cpd->smoothed_iron_mass_fraction_from_SNIa =
cpd->iron_mass_fraction_from_SNIa;
/* Individual metal mass fractions */
for (int i = 0; i < chemistry_element_count; i++) {
cpd->smoothed_metal_mass_fraction[i] = cpd->metal_mass_fraction[i];
}
}
/**
* @brief Sets the chemistry properties of the (x-)particles to a valid start
* state.
*
* @param phys_const The physical constants in internal units.
* @param us The internal system of units.
* @param cosmo The current cosmological model.
* @param data The global chemistry information.
* @param p Pointer to the particle data.
* @param xp Pointer to the extended particle data.
*/
__attribute__((always_inline)) INLINE static void chemistry_first_init_part(
const struct phys_const* restrict phys_const,
const struct unit_system* restrict us,
const struct cosmology* restrict cosmo,
const struct chemistry_global_data* data, struct part* restrict p,
struct xpart* restrict xp) {
/* Initialize mass fractions for total metals and each metal individually */
if (data->initial_metal_mass_fraction_total != -1) {
p->chemistry_data.metal_mass_fraction_total =
data->initial_metal_mass_fraction_total;
for (int elem = 0; elem < chemistry_element_count; ++elem) {
p->chemistry_data.metal_mass_fraction[elem] =
data->initial_metal_mass_fraction[elem];
}
}
chemistry_init_part(p, data);
}
/**
* @brief Sets the chemistry properties of the sparticles to a valid start
* state.
*
* @param data The global chemistry information.
* @param sp Pointer to the sparticle data.
*/
__attribute__((always_inline)) INLINE static void chemistry_first_init_spart(
const struct chemistry_global_data* data, struct spart* restrict sp) {
/* Initialize mass fractions for total metals and each metal individually */
if (data->initial_metal_mass_fraction_total != -1) {
sp->chemistry_data.metal_mass_fraction_total =
data->initial_metal_mass_fraction_total;
for (int elem = 0; elem < chemistry_element_count; ++elem)
sp->chemistry_data.metal_mass_fraction[elem] =
data->initial_metal_mass_fraction[elem];
}
/* Initialize mass fractions for total metals and each metal individually */
if (data->initial_metal_mass_fraction_total != -1) {
sp->chemistry_data.smoothed_metal_mass_fraction_total =
data->initial_metal_mass_fraction_total;
for (int elem = 0; elem < chemistry_element_count; ++elem)
sp->chemistry_data.smoothed_metal_mass_fraction[elem] =
data->initial_metal_mass_fraction[elem];
}
}
/**
* @brief Sets the chemistry properties of the sink particles to a valid start
* state.
*
* @param data The global chemistry information.
* @param sink Pointer to the sink particle data.
*/
__attribute__((always_inline)) INLINE static void chemistry_first_init_sink(
const struct chemistry_global_data* data, struct sink* restrict sink) {}
/**
* @brief Initialises the chemistry properties.
*
* @param parameter_file The parsed parameter file.
* @param us The current internal system of units.
* @param phys_const The physical constants in internal units.
* @param data The properties to initialise.
*/
static INLINE void chemistry_init_backend(struct swift_params* parameter_file,
const struct unit_system* us,
const struct phys_const* phys_const,
struct chemistry_global_data* data) {
/* Read the total metallicity */
data->initial_metal_mass_fraction_total = parser_get_opt_param_float(
parameter_file, "EAGLEChemistry:init_abundance_metal", -1);
if (data->initial_metal_mass_fraction_total != -1) {
/* Read the individual mass fractions */
for (int elem = 0; elem < chemistry_element_count; ++elem) {
char buffer[50];
sprintf(buffer, "EAGLEChemistry:init_abundance_%s",
chemistry_get_element_name((enum chemistry_element)elem));
data->initial_metal_mass_fraction[elem] =
parser_get_param_float(parameter_file, buffer);
}
/* Let's check that things make sense (broadly) */
/* H + He + Z should be ~1 */
float total_frac = data->initial_metal_mass_fraction[chemistry_element_H] +
data->initial_metal_mass_fraction[chemistry_element_He] +
data->initial_metal_mass_fraction_total;
if (total_frac < 0.98 || total_frac > 1.02)
error("The abundances provided seem odd! H + He + Z = %f =/= 1.",
total_frac);
/* Sum of metal elements should be <= Z */
total_frac = 0.f;
for (int elem = 0; elem < chemistry_element_count; ++elem) {
if (elem != chemistry_element_H && elem != chemistry_element_He) {
total_frac += data->initial_metal_mass_fraction[elem];
}
}
if (total_frac > 1.02 * data->initial_metal_mass_fraction_total)
error(
"The abundances provided seem odd! \\sum metal elements (%f) > Z "
"(%f)",
total_frac, data->initial_metal_mass_fraction_total);
/* Sum of all elements should be <= 1 */
total_frac = 0.f;
for (int elem = 0; elem < chemistry_element_count; ++elem) {
total_frac += data->initial_metal_mass_fraction[elem];
}
if (total_frac > 1.02)
error("The abundances provided seem odd! \\sum elements (%f) > 1",
total_frac);
}
}
/**
* @brief Prints the properties of the chemistry model to stdout.
*
* @brief The #chemistry_global_data containing information about the current
* model.
*/
static INLINE void chemistry_print_backend(
const struct chemistry_global_data* data) {
message("Chemistry model is 'EAGLE' tracking %d elements.",
chemistry_element_count);
}
/**
* @brief Updates to the chemistry data after the hydro force loop.
*
* Nothing to do here in EAGLE.
*
* @param p The particle to act upon.
* @param cosmo The current cosmological model.
* @param with_cosmology Are we running with the cosmology?
* @param time Current time of the simulation.
* @param dt Time step (in physical units).
*/
__attribute__((always_inline)) INLINE static void chemistry_end_force(
struct part* restrict p, const struct cosmology* cosmo,
const int with_cosmology, const double time, const double dt) {}
/**
* @brief Computes the chemistry-related time-step constraint.
*
* No constraints in the EAGLE model (no diffusion etc.) --> FLT_MAX
*
* @param phys_const The physical constants in internal units.
* @param cosmo The current cosmological model.
* @param us The internal system of units.
* @param hydro_props The properties of the hydro scheme.
* @param cd The global properties of the chemistry scheme.
* @param p Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float chemistry_timestep(
const struct phys_const* restrict phys_const,
const struct cosmology* restrict cosmo,
const struct unit_system* restrict us,
const struct hydro_props* hydro_props,
const struct chemistry_global_data* cd, const struct part* restrict p) {
return FLT_MAX;
}
/**
* @brief Initialise the chemistry properties of a black hole with
* the chemistry properties of the gas it is born from.
*
* Black holes don't store fractions so we need to use element masses.
*
* @param bp_data The black hole data to initialise.
* @param p_data The gas data to use.
* @param gas_mass The mass of the gas particle.
*/
__attribute__((always_inline)) INLINE static void chemistry_bpart_from_part(
struct chemistry_bpart_data* bp_data,
const struct chemistry_part_data* p_data, const double gas_mass) {
bp_data->metal_mass_total = p_data->metal_mass_fraction_total * gas_mass;
for (int i = 0; i < chemistry_element_count; ++i) {
bp_data->metal_mass[i] = p_data->metal_mass_fraction[i] * gas_mass;
}
bp_data->mass_from_SNIa = p_data->mass_from_SNIa;
bp_data->mass_from_SNII = p_data->mass_from_SNII;
bp_data->mass_from_AGB = p_data->mass_from_AGB;
bp_data->metal_mass_from_SNIa =
p_data->metal_mass_fraction_from_SNIa * gas_mass;
bp_data->metal_mass_from_SNII =
p_data->metal_mass_fraction_from_SNII * gas_mass;
bp_data->metal_mass_from_AGB =
p_data->metal_mass_fraction_from_AGB * gas_mass;
bp_data->iron_mass_from_SNIa =
p_data->iron_mass_fraction_from_SNIa * gas_mass;
bp_data->formation_metallicity = p_data->metal_mass_fraction_total;
bp_data->smoothed_formation_metallicity =
p_data->smoothed_metal_mass_fraction_total;
}
/**
* @brief Add the chemistry data of a gas particle to a black hole.
*
* Black holes don't store fractions so we need to add element masses.
*
* @param bp_data The black hole data to add to.
* @param p_data The gas data to use.
* @param gas_mass The mass of the gas particle.
*/
__attribute__((always_inline)) INLINE static void chemistry_add_part_to_bpart(
struct chemistry_bpart_data* bp_data,
const struct chemistry_part_data* p_data, const double gas_mass) {
bp_data->metal_mass_total += p_data->metal_mass_fraction_total * gas_mass;
for (int i = 0; i < chemistry_element_count; ++i) {
bp_data->metal_mass[i] += p_data->metal_mass_fraction[i] * gas_mass;
}
bp_data->mass_from_SNIa += p_data->mass_from_SNIa;
bp_data->mass_from_SNII += p_data->mass_from_SNII;
bp_data->mass_from_AGB += p_data->mass_from_AGB;
bp_data->metal_mass_from_SNIa +=
p_data->metal_mass_fraction_from_SNIa * gas_mass;
bp_data->metal_mass_from_SNII +=
p_data->metal_mass_fraction_from_SNII * gas_mass;
bp_data->metal_mass_from_AGB +=
p_data->metal_mass_fraction_from_AGB * gas_mass;
bp_data->iron_mass_from_SNIa +=
p_data->iron_mass_fraction_from_SNIa * gas_mass;
}
/**
* @brief Transfer chemistry data of a gas particle to a black hole.
*
* In contrast to `chemistry_add_part_to_bpart`, only a fraction of the
* masses stored in the gas particle are transferred here. Absolute masses
* of the gas particle are adjusted as well.
* Black holes don't store fractions so we need to add element masses.
*
* We expect the nibble_mass to be the gas particle mass multiplied by the
* nibble_fraction.
*
* @param bp_data The black hole data to add to.
* @param p_data The gas data to use.
* @param nibble_mass The mass to be removed from the gas particle.
* @param nibble_fraction The fraction of the (original) mass of the gas
* particle that is removed.
*/
__attribute__((always_inline)) INLINE static void
chemistry_transfer_part_to_bpart(struct chemistry_bpart_data* bp_data,
struct chemistry_part_data* p_data,
const double nibble_mass,
const double nibble_fraction) {
bp_data->metal_mass_total += p_data->metal_mass_fraction_total * nibble_mass;
for (int i = 0; i < chemistry_element_count; ++i)
bp_data->metal_mass[i] += p_data->metal_mass_fraction[i] * nibble_mass;
bp_data->mass_from_SNIa += p_data->mass_from_SNIa * nibble_fraction;
bp_data->mass_from_SNII += p_data->mass_from_SNII * nibble_fraction;
bp_data->mass_from_AGB += p_data->mass_from_AGB * nibble_fraction;
/* Absolute masses, so need to reduce the gas particle */
p_data->mass_from_SNIa -= p_data->mass_from_SNIa * nibble_fraction;
p_data->mass_from_SNII -= p_data->mass_from_SNII * nibble_fraction;
p_data->mass_from_AGB -= p_data->mass_from_AGB * nibble_fraction;
bp_data->metal_mass_from_SNIa +=
p_data->metal_mass_fraction_from_SNIa * nibble_mass;
bp_data->metal_mass_from_SNII +=
p_data->metal_mass_fraction_from_SNII * nibble_mass;
bp_data->metal_mass_from_AGB +=
p_data->metal_mass_fraction_from_AGB * nibble_mass;
bp_data->iron_mass_from_SNIa +=
p_data->iron_mass_fraction_from_SNIa * nibble_mass;
}
/**
* @brief Add the chemistry data of a black hole to another one.
*
* @param bp_data The black hole data to add to.
* @param swallowed_data The black hole data to use.
*/
__attribute__((always_inline)) INLINE static void chemistry_add_bpart_to_bpart(
struct chemistry_bpart_data* bp_data,
const struct chemistry_bpart_data* swallowed_data) {
bp_data->metal_mass_total += swallowed_data->metal_mass_total;
for (int i = 0; i < chemistry_element_count; ++i) {
bp_data->metal_mass[i] += swallowed_data->metal_mass[i];
}
bp_data->mass_from_SNIa += swallowed_data->mass_from_SNIa;
bp_data->mass_from_SNII += swallowed_data->mass_from_SNII;
bp_data->mass_from_AGB += swallowed_data->mass_from_AGB;
bp_data->metal_mass_from_SNIa += swallowed_data->metal_mass_from_SNIa;
bp_data->metal_mass_from_SNII += swallowed_data->metal_mass_from_SNII;
bp_data->metal_mass_from_AGB += swallowed_data->metal_mass_from_AGB;
bp_data->iron_mass_from_SNIa += swallowed_data->iron_mass_from_SNIa;
}
/**
* @brief Split the metal content of a particle into n pieces
*
* We only need to split the fields that are not fractions.
*
* @param p The #part.
* @param n The number of pieces to split into.
*/
__attribute__((always_inline)) INLINE static void chemistry_split_part(
struct part* p, const double n) {
p->chemistry_data.mass_from_SNIa /= n;
p->chemistry_data.mass_from_SNII /= n;
p->chemistry_data.mass_from_AGB /= n;
}
/**
* @brief Returns the total metallicity (metal mass fraction) of the
* gas particle to be used in feedback/enrichment related routines.
*
* We return the un-smoothed quantity here as the star will smooth
* over its gas neighbours.
*
* @param p Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float
chemistry_get_total_metal_mass_fraction_for_feedback(
const struct part* restrict p) {
return p->chemistry_data.metal_mass_fraction_total;
}
/**
* @brief Returns the abundance array (metal mass fractions) of the
* gas particle to be used in feedback/enrichment related routines.
*
* We return the un-smoothed quantity here as the star will smooth
* over its gas neighbours.
*
* @param p Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float const*
chemistry_get_metal_mass_fraction_for_feedback(const struct part* restrict p) {
return p->chemistry_data.metal_mass_fraction;
}
/**
* @brief Returns the total metallicity (metal mass fraction) of the
* star particle to be used in feedback/enrichment related routines.
*
* EAGLE uses smooth abundances for everything.
*
* @param sp Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float
chemistry_get_star_total_metal_mass_fraction_for_feedback(
const struct spart* restrict sp) {
return sp->chemistry_data.smoothed_metal_mass_fraction_total;
}
/**
* @brief Returns the abundance array (metal mass fractions) of the
* star particle to be used in feedback/enrichment related routines.
*
* EAGLE uses smooth abundances for everything.
*
* @param sp Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float const*
chemistry_get_star_metal_mass_fraction_for_feedback(
const struct spart* restrict sp) {
return sp->chemistry_data.smoothed_metal_mass_fraction;
}
/**
* @brief Returns the total metallicity (metal mass fraction) of the
* gas particle to be used in cooling related routines.
*
* EAGLE uses smooth abundances for everything.
*
* @param p Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float
chemistry_get_total_metal_mass_fraction_for_cooling(
const struct part* restrict p) {
return p->chemistry_data.smoothed_metal_mass_fraction_total;
}
/**
* @brief Returns the abundance array (metal mass fractions) of the
* gas particle to be used in cooling related routines.
*
* EAGLE uses smooth abundances for everything.
*
* @param p Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float const*
chemistry_get_metal_mass_fraction_for_cooling(const struct part* restrict p) {
return p->chemistry_data.smoothed_metal_mass_fraction;
}
/**
* @brief Returns the total metallicity (metal mass fraction) of the
* gas particle to be used in star formation related routines.
*
* EAGLE uses smooth abundances for everything.
*
* @param p Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float
chemistry_get_total_metal_mass_fraction_for_star_formation(
const struct part* restrict p) {
return p->chemistry_data.smoothed_metal_mass_fraction_total;
}
/**
* @brief Returns the abundance array (metal mass fractions) of the
* gas particle to be used in star formation related routines.
*
* EAGLE uses smooth abundances for everything.
*
* @param p Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float const*
chemistry_get_metal_mass_fraction_for_star_formation(
const struct part* restrict p) {
return p->chemistry_data.smoothed_metal_mass_fraction;
}
/**
* @brief Returns the total metal mass of the
* gas particle to be used in the stats related routines.
*
* @param p Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float
chemistry_get_total_metal_mass_for_stats(const struct part* restrict p) {
return p->chemistry_data.metal_mass_fraction_total * hydro_get_mass(p);
}
/**
* @brief Returns the total metal mass of the
* star particle to be used in the stats related routines.
*
* @param sp Pointer to the star particle data.
*/
__attribute__((always_inline)) INLINE static float
chemistry_get_star_total_metal_mass_for_stats(const struct spart* restrict sp) {
return sp->chemistry_data.metal_mass_fraction_total * sp->mass;
}
/**
* @brief Returns the total metal mass of the
* black hole particle to be used in the stats related routines.
*
* @param bp Pointer to the BH particle data.
*/
__attribute__((always_inline)) INLINE static float
chemistry_get_bh_total_metal_mass_for_stats(const struct bpart* restrict bp) {
return bp->chemistry_data.metal_mass_total;
}
/**
* @brief Returns the total metallicity (metal mass fraction) of the
* star particle to be used in the luminosity calculations.
*
* @param sp Pointer to the star particle data.
*/
__attribute__((always_inline)) INLINE static float
chemistry_get_star_total_metal_mass_fraction_for_luminosity(
const struct spart* restrict sp) {
return sp->chemistry_data.metal_mass_fraction_total;
}
#endif /* SWIFT_CHEMISTRY_EAGLE_H */