############################################################################### # This file is part of SWIFT. # Copyright (c) 2018 Bert Vandenbroucke (bert.vandenbroucke@gmail.com) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . # ############################################################################## import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import numpy as np from scipy import stats import h5py import sys # Parameters gamma = 5.0 / 3.0 # Polytropic index rhoL = 1.0 # Initial density in the non vacuum state vL = 0.0 # Initial velocity in the non vacuum state PL = 1.0 # Initial pressure in the non vacuum state rhoR = 0.0 # Initial vacuum density vR = 0.0 # Initial vacuum velocity PR = 0.0 # Initial vacuum pressure plt.style.use("../../../tools/stylesheets/mnras.mplstyle") snap = int(sys.argv[1]) # Open the file and read the relevant data file = h5py.File("vacuum_{0:04d}.hdf5".format(snap), "r") coords = file["/PartType0/Coordinates"] x = np.sqrt((coords[:, 0] - 0.5) ** 2 + (coords[:, 1] - 0.5) ** 2) rho = file["/PartType0/Densities"][:] vels = file["/PartType0/Velocities"] v = np.sqrt(vels[:, 0] ** 2 + vels[:, 1] ** 2) u = file["/PartType0/InternalEnergies"][:] S = file["/PartType0/Entropies"][:] P = file["/PartType0/Pressures"][:] time = file["/Header"].attrs["Time"][0] scheme = file["/HydroScheme"].attrs["Scheme"] kernel = file["/HydroScheme"].attrs["Kernel function"] neighbours = file["/HydroScheme"].attrs["Kernel target N_ngb"][0] eta = file["/HydroScheme"].attrs["Kernel eta"][0] git = file["Code"].attrs["Git Revision"] # Bin the data values # We let scipy choose the bins and then reuse them for all other quantities rho_bin, x_bin_edge, _ = stats.binned_statistic(x, rho, statistic="mean", bins=50) rho2_bin, _, _ = stats.binned_statistic(x, rho ** 2, statistic="mean", bins=x_bin_edge) rho_sigma_bin = np.sqrt(rho2_bin - rho_bin ** 2) v_bin, _, _ = stats.binned_statistic(x, v, statistic="mean", bins=x_bin_edge) v2_bin, _, _ = stats.binned_statistic(x, v ** 2, statistic="mean", bins=x_bin_edge) v_sigma_bin = np.sqrt(v2_bin - v_bin ** 2) P_bin, _, _ = stats.binned_statistic(x, P, statistic="mean", bins=x_bin_edge) P2_bin, _, _ = stats.binned_statistic(x, P ** 2, statistic="mean", bins=x_bin_edge) P_sigma_bin = np.sqrt(P2_bin - P_bin ** 2) u_bin, _, _ = stats.binned_statistic(x, u, statistic="mean", bins=x_bin_edge) u2_bin, _, _ = stats.binned_statistic(x, u ** 2, statistic="mean", bins=x_bin_edge) u_sigma_bin = np.sqrt(u2_bin - u_bin ** 2) S_bin, _, _ = stats.binned_statistic(x, S, statistic="mean", bins=x_bin_edge) S2_bin, _, _ = stats.binned_statistic(x, S ** 2, statistic="mean", bins=x_bin_edge) S_sigma_bin = np.sqrt(S2_bin - S_bin ** 2) x_bin = 0.5 * (x_bin_edge[1:] + x_bin_edge[:-1]) ref = np.loadtxt("vacuumSpherical2D_exact.txt") # Plot the interesting quantities plt.figure(figsize=(7, 7 / 1.6)) line_color = "C4" binned_color = "C2" binned_marker_size = 4 scatter_props = dict( marker=".", ms=1, markeredgecolor="none", alpha=0.5, zorder=-1, rasterized=True, linestyle="none", ) errorbar_props = dict(color=binned_color, ms=binned_marker_size, fmt=".", lw=1.2) # Velocity profile plt.subplot(231) plt.plot(x, v, **scatter_props) plt.plot(ref[:, 0], ref[:, 2], color=line_color, alpha=0.8, lw=1.2) plt.errorbar(x_bin, v_bin, yerr=v_sigma_bin, **errorbar_props) plt.xlabel("${\\rm{Radius}}~r$", labelpad=0) plt.ylabel("${\\rm{Velocity}}~v_r$", labelpad=0) plt.xlim(0.0, 0.4) plt.ylim(-0.1, 3.2) # Density profile plt.subplot(232) plt.plot(x, rho, **scatter_props) plt.plot(ref[:, 0], ref[:, 1], color=line_color, alpha=0.8, lw=1.2) plt.errorbar(x_bin, rho_bin, yerr=rho_sigma_bin, **errorbar_props) plt.xlabel("${\\rm{Radius}}~r$", labelpad=0) plt.ylabel("${\\rm{Density}}~\\rho$", labelpad=0) plt.xlim(0.0, 0.4) # Pressure profile plt.subplot(233) plt.plot(x, P, **scatter_props) plt.plot(ref[:, 0], ref[:, 3], color=line_color, alpha=0.8, lw=1.2) plt.errorbar(x_bin, P_bin, yerr=P_sigma_bin, **errorbar_props) plt.xlabel("${\\rm{Radius}}~r$", labelpad=0) plt.ylabel("${\\rm{Pressure}}~P$", labelpad=0) plt.xlim(0.0, 0.4) # Internal energy profile plt.subplot(234) plt.plot(x, u, **scatter_props) plt.plot( ref[:, 0], ref[:, 3] / ref[:, 1] / (gamma - 1.0), color=line_color, alpha=0.8, lw=1.2, ) plt.errorbar(x_bin, u_bin, yerr=u_sigma_bin, **errorbar_props) plt.xlabel("${\\rm{Radius}}~r$", labelpad=0) plt.ylabel("${\\rm{Internal~Energy}}~u$", labelpad=0) plt.xlim(0.0, 0.4) # Entropy profile plt.subplot(235) plt.plot(x, S, **scatter_props) plt.plot(ref[:, 0], ref[:, 3] / ref[:, 1] ** gamma, color=line_color, alpha=0.8, lw=1.2) plt.errorbar(x_bin, S_bin, yerr=S_sigma_bin, **errorbar_props) plt.xlabel("${\\rm{Radius}}~r$", labelpad=0) plt.ylabel("${\\rm{Entropy}}~S$", labelpad=0) plt.xlim(0.0, 0.4) plt.ylim(0.0, 4.0) # Run information plt.subplot(236, frameon=False) text_fontsize = 5 plt.text( -0.45, 0.9, "Vacuum test with $\\gamma={0:.3f}$ in 2D at $t = {1:.2f}$".format(gamma, time), fontsize=text_fontsize, ) plt.text( -0.45, 0.8, "Left: $(P_L, \\rho_L, v_L) = ({0:.3f}, {1:.3f}, {2:.3f})$".format(PL, rhoL, vL), fontsize=text_fontsize, ) plt.text( -0.45, 0.7, "Right: $(P_R, \\rho_R, v_R) = ({0:.3f}, {1:.3f}, {2:.3f})$".format(PR, rhoR, vR), fontsize=text_fontsize, ) plt.plot([-0.45, 0.1], [0.62, 0.62], "k-", lw=1) plt.text(-0.45, 0.5, "$SWIFT$ {0}".format(git.decode("utf-8")), fontsize=text_fontsize) plt.text(-0.45, 0.4, scheme.decode("utf-8"), fontsize=text_fontsize) plt.text(-0.45, 0.3, kernel.decode("utf-8"), fontsize=text_fontsize) plt.text( -0.45, 0.2, "${0:.2f}$ neighbours ($\\eta={1:.3f}$)".format(neighbours, eta), fontsize=text_fontsize, ) plt.xlim(-0.5, 0.5) plt.ylim(0.0, 1.0) plt.xticks([]) plt.yticks([]) plt.tight_layout() plt.savefig("Vacuum.png", dpi=200)