############################################################################### # This file is part of SWIFT. # Copyright (c) 2016 Matthieu Schaller (schaller@strw.leidenuniv.nl) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . # ############################################################################## import h5py import sys from numpy import * # Generates a swift IC file containing a cartesian distribution of particles # at a constant density and pressure in a cubic box # Parameters periodic = 1 # 1 For periodic box boxSize = 1.0 L = int(sys.argv[1]) # Number of particles along one axis N = int(sys.argv[2]) # Write N particles at a time to avoid requiring a lot of RAM rho = 2.0 # Density P = 1.0 # Pressure gamma = 5.0 / 3.0 # Gas adiabatic index eta = 1.2349 # 48 ngbs with cubic spline kernel fileName = "uniformBox_%d.hdf5" % L # --------------------------------------------------- numPart = L ** 3 mass = boxSize ** 3 * rho / numPart internalEnergy = P / ((gamma - 1.0) * rho) # --------------------------------------------------- n_iterations = numPart / N remainder = numPart % N print( "Writing", numPart, "in", n_iterations, "iterations of size", N, "and a remainder of", remainder, ) # --------------------------------------------------- # File file = h5py.File(fileName, "w") # Header grp = file.create_group("/Header") grp.attrs["BoxSize"] = boxSize grp.attrs["NumPart_Total"] = [numPart % (int(1) << 32), 0, 0, 0, 0, 0] grp.attrs["NumPart_Total_HighWord"] = [numPart / (int(1) << 32), 0, 0, 0, 0, 0] grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0] grp.attrs["Time"] = 0.0 grp.attrs["NumFilesPerSnapshot"] = 1 grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] grp.attrs["Flag_Entropy_ICs"] = 0 # Runtime parameters grp = file.create_group("/RuntimePars") grp.attrs["PeriodicBoundariesOn"] = periodic # Units grp = file.create_group("/Units") grp.attrs["Unit length in cgs (U_L)"] = 1.0 grp.attrs["Unit mass in cgs (U_M)"] = 1.0 grp.attrs["Unit time in cgs (U_t)"] = 1.0 grp.attrs["Unit current in cgs (U_I)"] = 1.0 grp.attrs["Unit temperature in cgs (U_T)"] = 1.0 # Particle group grp = file.create_group("/PartType0") # First create the arrays in the file ds_v = grp.create_dataset( "Velocities", (numPart, 3), "f", chunks=True, compression="gzip" ) ds_m = grp.create_dataset("Masses", (numPart, 1), "f", chunks=True, compression="gzip") ds_h = grp.create_dataset( "SmoothingLength", (numPart, 1), "f", chunks=True, compression="gzip" ) ds_u = grp.create_dataset( "InternalEnergy", (numPart, 1), "f", chunks=True, compression="gzip" ) ds_id = grp.create_dataset( "ParticleIDs", (numPart, 1), "L", chunks=True, compression="gzip" ) ds_x = grp.create_dataset( "Coordinates", (numPart, 3), "d", chunks=True, compression="gzip" ) # Now loop and create parts of the dataset offset = 0 for n in range(n_iterations): v = zeros((N, 3)) ds_v[offset : offset + N, :] = v v = zeros(1) m = full((N, 1), mass) ds_m[offset : offset + N] = m m = zeros(1) h = full((N, 1), eta * boxSize / L) ds_h[offset : offset + N] = h h = zeros(1) u = full((N, 1), internalEnergy) ds_u[offset : offset + N] = u u = zeros(1) ids = linspace(offset, offset + N, N, endpoint=False).reshape((N, 1)) ds_id[offset : offset + N] = ids + 1 x = ids % L y = ((ids - x) / L) % L z = (ids - x - L * y) / L ** 2 ids = zeros(1) coords = zeros((N, 3)) coords[:, 0] = z[:, 0] * boxSize / L + boxSize / (2 * L) coords[:, 1] = y[:, 0] * boxSize / L + boxSize / (2 * L) coords[:, 2] = x[:, 0] * boxSize / L + boxSize / (2 * L) ds_x[offset : offset + N, :] = coords coords = zeros((1, 3)) offset += N print("Done", offset, "/", numPart, "(%.1f %%)" % (100 * (float)(offset) / numPart)) # And now, the remainder v = zeros((remainder, 3)) ds_v[offset : offset + remainder, :] = v v = zeros(1) m = full((remainder, 1), mass) ds_m[offset : offset + remainder] = m m = zeros(1) h = full((remainder, 1), eta * boxSize / L) ds_h[offset : offset + remainder] = h h = zeros(1) u = full((remainder, 1), internalEnergy) ds_u[offset : offset + remainder] = u u = zeros(1) ids = linspace(offset, offset + remainder, remainder, endpoint=False).reshape( (remainder, 1) ) ds_id[offset : offset + remainder] = ids + 1 x = ids % L y = ((ids - x) / L) % L z = (ids - x - L * y) / L ** 2 coords = zeros((remainder, 3)) coords[:, 0] = z[:, 0] * boxSize / L + boxSize / (2 * L) coords[:, 1] = y[:, 0] * boxSize / L + boxSize / (2 * L) coords[:, 2] = x[:, 0] * boxSize / L + boxSize / (2 * L) ods_x[offset : offset + remainder, :] = coords print("Done", offset + remainder, "/", numPart) file.close()