############################################################################### # This file is part of SWIFT. # Copyright (c) 2016 Matthieu Schaller (schaller@strw.leidenuniv.nl) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . # ############################################################################## # Computes the analytical solution of the Noh problem and plots the SPH answer # Parameters gas_gamma = 5.0 / 3.0 # Polytropic index rho0 = 1.0 # Background density P0 = 1.0e-6 # Background pressure v0 = 1 import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from scipy import stats import numpy as np import h5py import sys plt.style.use("../../../tools/stylesheets/mnras.mplstyle") snap = int(sys.argv[1]) # Read the simulation data sim = h5py.File("noh_%04d.hdf5" % snap, "r") boxSize = sim["/Header"].attrs["BoxSize"][0] time = sim["/Header"].attrs["Time"][0] scheme = sim["/HydroScheme"].attrs["Scheme"] kernel = sim["/HydroScheme"].attrs["Kernel function"] neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"] eta = sim["/HydroScheme"].attrs["Kernel eta"] git = sim["Code"].attrs["Git Revision"] x = sim["/PartType0/Coordinates"][:, 0] y = sim["/PartType0/Coordinates"][:, 1] z = sim["/PartType0/Coordinates"][:, 2] vx = sim["/PartType0/Velocities"][:, 0] vy = sim["/PartType0/Velocities"][:, 1] vz = sim["/PartType0/Velocities"][:, 2] u = sim["/PartType0/InternalEnergies"][:] S = sim["/PartType0/Entropies"][:] P = sim["/PartType0/Pressures"][:] rho = sim["/PartType0/Densities"][:] r = np.sqrt((x - 1) ** 2 + (y - 1) ** 2 + (z - 1) ** 2) v = -np.sqrt(vx ** 2 + vy ** 2 + vz ** 2) # Bin the data r_bin_edge = np.arange(0.0, 1.0, 0.02) r_bin = 0.5 * (r_bin_edge[1:] + r_bin_edge[:-1]) rho_bin, _, _ = stats.binned_statistic(r, rho, statistic="mean", bins=r_bin_edge) v_bin, _, _ = stats.binned_statistic(r, v, statistic="mean", bins=r_bin_edge) P_bin, _, _ = stats.binned_statistic(r, P, statistic="mean", bins=r_bin_edge) S_bin, _, _ = stats.binned_statistic(r, S, statistic="mean", bins=r_bin_edge) u_bin, _, _ = stats.binned_statistic(r, u, statistic="mean", bins=r_bin_edge) rho2_bin, _, _ = stats.binned_statistic(r, rho ** 2, statistic="mean", bins=r_bin_edge) v2_bin, _, _ = stats.binned_statistic(r, v ** 2, statistic="mean", bins=r_bin_edge) P2_bin, _, _ = stats.binned_statistic(r, P ** 2, statistic="mean", bins=r_bin_edge) S2_bin, _, _ = stats.binned_statistic(r, S ** 2, statistic="mean", bins=r_bin_edge) u2_bin, _, _ = stats.binned_statistic(r, u ** 2, statistic="mean", bins=r_bin_edge) rho_sigma_bin = np.sqrt(rho2_bin - rho_bin ** 2) v_sigma_bin = np.sqrt(v2_bin - v_bin ** 2) P_sigma_bin = np.sqrt(P2_bin - P_bin ** 2) S_sigma_bin = np.sqrt(S2_bin - S_bin ** 2) u_sigma_bin = np.sqrt(u2_bin - u_bin ** 2) # Analytic solution N = 1000 # Number of points x_s = np.arange(0, 2.0, 2.0 / N) - 1.0 rho_s = np.ones(N) * rho0 P_s = np.ones(N) * rho0 v_s = np.ones(N) * v0 # Shock position u0 = rho0 * P0 * (gas_gamma - 1) us = 0.5 * (gas_gamma - 1) * v0 rs = us * time # Post-shock values rho_s[np.abs(x_s) < rs] = rho0 * ((gas_gamma + 1) / (gas_gamma - 1)) ** 3 P_s[np.abs(x_s) < rs] = ( 0.5 * rho0 * v0 ** 2 * (gas_gamma + 1) ** 3 / (gas_gamma - 1) ** 2 ) v_s[np.abs(x_s) < rs] = 0.0 # Pre-shock values rho_s[np.abs(x_s) >= rs] = rho0 * (1 + v0 * time / np.abs(x_s[np.abs(x_s) >= rs])) ** 2 P_s[np.abs(x_s) >= rs] = 0 v_s[x_s >= rs] = -v0 v_s[x_s <= -rs] = v0 # Additional arrays u_s = P_s / (rho_s * (gas_gamma - 1.0)) # internal energy s_s = P_s / rho_s ** gas_gamma # entropic function # Plot the interesting quantities plt.figure(figsize=(7, 7 / 1.6)) line_color = "C4" binned_color = "C2" binned_marker_size = 4 scatter_props = dict( marker=".", ms=1, markeredgecolor="none", alpha=0.2, zorder=-1, rasterized=True, linestyle="none", ) errorbar_props = dict(color=binned_color, ms=binned_marker_size, fmt=".", lw=1.2) # Velocity profile -------------------------------- plt.subplot(231) plt.plot(r, v, **scatter_props) plt.plot(x_s, v_s, "--", color=line_color, alpha=0.8, lw=1.2) plt.errorbar(r_bin, v_bin, yerr=v_sigma_bin, **errorbar_props) plt.xlabel("${\\rm{Radius}}~r$", labelpad=0) plt.ylabel("${\\rm{Velocity}}~v_r$", labelpad=-4) plt.xlim(0, 0.5) plt.ylim(-1.2, 0.4) # Density profile -------------------------------- plt.subplot(232) plt.plot(r, rho, **scatter_props) plt.plot(x_s, rho_s, "--", color=line_color, alpha=0.8, lw=1.2) plt.errorbar(r_bin, rho_bin, yerr=rho_sigma_bin, **errorbar_props) plt.xlabel("${\\rm{Radius}}~r$", labelpad=0) plt.ylabel("${\\rm{Density}}~\\rho$", labelpad=0) plt.xlim(0, 0.5) plt.ylim(0.95, 71) # Pressure profile -------------------------------- plt.subplot(233) plt.plot(r, P, **scatter_props) plt.plot(x_s, P_s, "--", color=line_color, alpha=0.8, lw=1.2) plt.errorbar(r_bin, P_bin, yerr=P_sigma_bin, **errorbar_props) plt.xlabel("${\\rm{Radius}}~r$", labelpad=0) plt.ylabel("${\\rm{Pressure}}~P$", labelpad=0) plt.xlim(0, 0.5) plt.ylim(-0.5, 25) # Internal energy profile ------------------------- plt.subplot(234) plt.plot(r, u, **scatter_props) plt.plot(x_s, u_s, "--", color=line_color, alpha=0.8, lw=1.2) plt.errorbar(r_bin, u_bin, yerr=u_sigma_bin, **errorbar_props) plt.xlabel("${\\rm{Radius}}~r$", labelpad=0) plt.ylabel("${\\rm{Internal~Energy}}~u$", labelpad=0) plt.xlim(0, 0.5) plt.ylim(-0.05, 0.8) # Entropy profile --------------------------------- plt.subplot(235) plt.plot(r, S, **scatter_props) plt.plot(x_s, s_s, "--", color=line_color, alpha=0.8, lw=1.2) plt.errorbar(r_bin, S_bin, yerr=S_sigma_bin, **errorbar_props) plt.xlabel("${\\rm{Radius}}~r$", labelpad=0) plt.ylabel("${\\rm{Entropy}}~S$", labelpad=-9) plt.xlim(0, 0.5) plt.ylim(-0.05, 0.2) # Information ------------------------------------- plt.subplot(236, frameon=False) text_fontsize = 5 plt.text( -0.45, 0.9, "Noh problem with $\\gamma=%.3f$ in 3D at $t=%.2f$" % (gas_gamma, time), fontsize=text_fontsize, ) plt.text( -0.45, 0.8, "ICs: $(P_0, \\rho_0, v_0) = (%1.2e, %.3f, %.3f)$" % (1e-6, 1.0, -1.0), fontsize=text_fontsize, ) plt.plot([-0.45, 0.1], [0.62, 0.62], "k-", lw=1) plt.text(-0.45, 0.5, "$SWIFT$ %s" % git.decode("utf-8"), fontsize=text_fontsize) plt.text(-0.45, 0.4, scheme.decode("utf-8"), fontsize=text_fontsize) plt.text(-0.45, 0.3, kernel.decode("utf-8"), fontsize=text_fontsize) plt.text( -0.45, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)" % (neighbours, eta), fontsize=text_fontsize, ) plt.xlim(-0.5, 0.5) plt.ylim(0, 1) plt.xticks([]) plt.yticks([]) plt.tight_layout() plt.savefig("Noh.png", dpi=200)