import numpy as np import h5py as h5 import matplotlib.pyplot as plt import sys n_snaps = 11 # for the plotting # n_radial_bins = int(sys.argv[1]) # some constants OMEGA = 0.3 # Cosmological matter fraction at z = 0 PARSEC_IN_CGS = 3.0856776e18 KM_PER_SEC_IN_CGS = 1.0e5 CONST_G_CGS = 6.672e-8 h = 0.67777 # hubble parameter gamma = 5.0 / 3.0 eta = 1.2349 H_0_cgs = 100.0 * h * KM_PER_SEC_IN_CGS / (1.0e6 * PARSEC_IN_CGS) # read some header/parameter information from the first snapshot filename = "Hydrostatic_0000.hdf5" f = h5.File(filename, "r") params = f["Parameters"] unit_mass_cgs = float(params.attrs["InternalUnitSystem:UnitMass_in_cgs"]) unit_length_cgs = float(params.attrs["InternalUnitSystem:UnitLength_in_cgs"]) unit_velocity_cgs = float(params.attrs["InternalUnitSystem:UnitVelocity_in_cgs"]) unit_time_cgs = unit_length_cgs / unit_velocity_cgs v_c = float(params.attrs["IsothermalPotential:vrot"]) v_c_cgs = v_c * unit_velocity_cgs header = f["Header"] N = header.attrs["NumPart_Total"][0] box_centre = np.array(header.attrs["BoxSize"]) # calculate r_vir and M_vir from v_c r_vir_cgs = v_c_cgs / (10.0 * H_0_cgs * np.sqrt(OMEGA)) M_vir_cgs = r_vir_cgs * v_c_cgs ** 2 / CONST_G_CGS for i in range(n_snaps): filename = "Hydrostatic_%04d.hdf5" % i f = h5.File(filename, "r") coords_dset = f["PartType0/Coordinates"] coords = np.array(coords_dset) # translate coords by centre of box header = f["Header"] snap_time = header.attrs["Time"] snap_time_cgs = snap_time * unit_time_cgs coords[:, 0] -= box_centre[0] / 2.0 coords[:, 1] -= box_centre[1] / 2.0 coords[:, 2] -= box_centre[2] / 2.0 radius = np.sqrt(coords[:, 0] ** 2 + coords[:, 1] ** 2 + coords[:, 2] ** 2) radius_cgs = radius * unit_length_cgs radius_over_virial_radius = radius_cgs / r_vir_cgs r = radius_over_virial_radius # bin_width = 1./n_radial_bins # hist = np.histogram(r,bins = n_radial_bins)[0] # number of particles in each bin # #find the mass in each radial bin # mass_dset = f["PartType0/Masses"] # #mass of each particles should be equal # part_mass = np.array(mass_dset)[0] # part_mass_cgs = part_mass * unit_mass_cgs # part_mass_over_virial_mass = part_mass_cgs / M_vir_cgs # mass_hist = hist * part_mass_over_virial_mass # radial_bin_mids = np.linspace(bin_width/2.,1 - bin_width/2.,n_radial_bins) # #volume in each radial bin # volume = 4.*np.pi * radial_bin_mids**2 * bin_width # #now divide hist by the volume so we have a density in each bin # density = mass_hist / volume # read the densities density_dset = f["PartType0/Density"] density = np.array(density_dset) density_cgs = density * unit_mass_cgs / unit_length_cgs ** 3 rho = density_cgs * r_vir_cgs ** 3 / M_vir_cgs t = np.linspace(0.01, 2.0, 1000) rho_analytic = t ** (-2) / (4.0 * np.pi) plt.plot(r, rho, "x", label="Numerical solution") plt.plot(t, rho_analytic, label="Analytic Solution") plt.legend(loc="upper right") plt.xlabel(r"$r / r_{vir}$") plt.ylabel(r"$\rho / (M_{vir} / r_{vir}^3)$") plt.title( r"$\mathrm{Time}= %.3g \, s \, , \, %d \, \, \mathrm{particles} \,,\, v_c = %.1f \, \mathrm{km / s}$" % (snap_time_cgs, N, v_c) ) # plt.ylim((0.1,40)) plt.xscale("log") plt.yscale("log") plot_filename = "density_profile_%03d.png" % i plt.savefig(plot_filename, format="png") plt.close()