Skip to content
Snippets Groups Projects
Commit b551c379 authored by Cristian Barrera-Hinojosa's avatar Cristian Barrera-Hinojosa
Browse files

jupyter notebook for tutorial

parent 17da8cd3
No related branches found
No related tags found
No related merge requests found
%% Cell type:markdown id: tags:
------------------------------------------
# GRAMSES Tutorial
------------------------------------------
## Introduction
This Jupyter Notebook will (try to) guide you step-by-step through some GRAMSES examples.
## Definitions and conventions
### Metric
In GRAMSES the metric is given in the 3+1 form:
\begin{equation}
{\rm d}s^2 = g_{\mu\nu}{\rm d}x^{\mu}{\rm d}x^{\nu} = -\alpha^2 {\rm d}t^2+\gamma_{ij}\left(\beta^i{\rm d}t+{\rm d}x^i\right)\left(\beta^j{\rm d}t+{\rm d}x^j\right)
\end{equation}
where $\alpha$ is the lapse function, $\beta^i$ the shift vector and $\gamma_{ij}$ the induced metric on the spatial hypersurfaces, which in the constrained formulation adopted by GRAMSES is approximated by a conformally-flat metric, i.e.
\begin{equation}
\gamma_{ij}=\psi^4\delta_{ij}
\end{equation}
with $\psi$ being the conformal factor and $\delta_{ij}$ the Kronecker delta.
### Matter sources
The usual matter source terms defined in the 3+1 formalism are given by the following projections of the energy-momentum tensor:
\begin{align}
\rho &\equiv n_\mu n_\nu T^{\mu\nu}\,,\label{rho-def}\\
S_i&\equiv-\gamma_{i\mu}n_\nu T^{\mu\nu}\,,\label{S_i-def}\\
S_{ij}&\equiv\gamma_{i\mu}\gamma_{j\nu}T^{\mu\nu}\,, \qquad\qquad S=\gamma^{ij}S_{ij}\,.
\end{align}
GRAMSES uses and outputs the following conformal matter source terms:
\begin{align}
s_0({\bf x})&\equiv\sqrt{\gamma}\rho&&\propto{m\alpha{u}^0}\,,\label{eq:s0-cic}\\
s_i({\bf x})&\equiv\sqrt{\gamma}S_i&&\propto m{u}_i\,,\\
s_{ij}({\bf x})&\equiv\sqrt{\gamma}S_{ij}&&\propto m\frac{{u}_i{u}_j}{\alpha{u}^0}\,.\label{eq:s-cic}
\end{align}
In these, ${\bf x}$ is a (discrete) position vector on the cartesian simulation grid and the proportionality symbol in each equation stands for the standard cloud-in-cell (CIC) weights used for the particle-mesh projection. From these we have the following useful relations:
\begin{align}
s_0&=\rho\Gamma\,,\\
s_i&=\frac{\rho}{\Gamma}u_i\,,\label{eq:s_i-rel}\\
s_{ij}&=\frac{\rho}{\Gamma^2}u_iu_j\,, \qquad\implies s=\rho(1-\Gamma^{-2})\,,\\
u_i&=\Gamma^2\frac{s_i}{s_0}\,,
\end{align}
where $\Gamma\equiv\alpha{u}^0=\sqrt{1+\gamma^{ij}u_iu_j}$ is the Lorentz factor.
%% Cell type:markdown id: tags:
# 0. Converting Fortran data to numpy format
The first step is to run the readgrav script provided.
%% Cell type:code id: tags:
``` python
# You can run it from here where the arguments are:
#
# output_000xx/ ncpus ilevelmin
#
# where 2^ilevelmin is the cells number along 1D.
%run -i 'readgrav_gr.py' output_00004/ 4 7
```
%% Cell type:code id: tags:
``` python
# Import python libraries needed
import numpy as np
import matplotlib.pyplot as plt
import math
from matplotlib import gridspec
from matplotlib.colors import LogNorm
import matplotlib.ticker as ticker
from nbodykit.lab import *
# Plots style
font = {'size':14}
plt.rc('font', **font)
plt.rc('font', family='serif')
plt.rc('text', usetex=True)
```
%% Cell type:markdown id: tags:
## Read snapshot in numpy format
%% Cell type:code id: tags:
``` python
# Simulations & snapshot info
a_out = 1.0
box_size = 256. # Mpc/h
grid_size= 128
# load snapshot file in npy format
#grav_raw = np.load('output_00004_B256_PM128/grav_00004_new.out.npy')
grav_raw = np.load('output_00004/grav_00004.out.npy')
grad_b = [grav_raw[:,1],grav_raw[:,2],grav_raw[:,3]]
gr_pot = [grav_raw[:,4],grav_raw[:,5],grav_raw[:,6],grav_raw[:,7],grav_raw[:,8],grav_raw[:,9]]
gr_mat = [grav_raw[:,10],grav_raw[:,11],grav_raw[:,12],grav_raw[:,13],grav_raw[:,14]]
x = grav_raw[:,15]
y = grav_raw[:,16]
z = grav_raw[:,17]
# Conversion from internal code units to physical units -- do not modify!
ctilde = 3*10**3/box_size
norm_B = 1/a_out**2/ctilde
norm_si= 2/(ctilde*box_size)**2/a_out**4
B_x = gr_pot[2] * norm_B
B_y = gr_pot[3] * norm_B
B_z = gr_pot[4] * norm_B
dx_b=grad_b[0] * norm_B
dy_b=grad_b[1] * norm_B
dz_b=grad_b[2] * norm_B
s_x = gr_mat[1] * norm_si
s_y = gr_mat[2] * norm_si
s_z = gr_mat[3] * norm_si
```
%% Cell type:code id: tags:
``` python
# Construct 3D box of fields
xx_box= grid_size*x
yy_box= grid_size*y
zz_box= grid_size*z
x_box = xx_box.astype(int)
y_box = yy_box.astype(int)
z_box = zz_box.astype(int)
# Shift vector components
B_x_box = np.zeros((grid_size,grid_size,grid_size))
B_y_box = np.zeros((grid_size,grid_size,grid_size))
B_z_box = np.zeros((grid_size,grid_size,grid_size))
B_x_box[(x_box,y_box,z_box)] = B_x
B_y_box[(x_box,y_box,z_box)] = B_y
B_z_box[(x_box,y_box,z_box)] = B_z
dx_b_box = np.zeros((grid_size,grid_size,grid_size))
dy_b_box = np.zeros((grid_size,grid_size,grid_size))
dz_b_box = np.zeros((grid_size,grid_size,grid_size))
dx_b_box[(x_box,y_box,z_box)] = dx_b
dy_b_box[(x_box,y_box,z_box)] = dy_b
dz_b_box[(x_box,y_box,z_box)] = dz_b
```
%% Cell type:code id: tags:
``` python
# Matter source terms
s0_box = np.zeros((grid_size,grid_size,grid_size))
s_x_box= np.zeros((grid_size,grid_size,grid_size))
s_y_box= np.zeros((grid_size,grid_size,grid_size))
s_z_box= np.zeros((grid_size,grid_size,grid_size))
s0_box [(x_box,y_box,z_box)]= gr_mat[0]
s_x_box[(x_box,y_box,z_box)]= s_x
s_y_box[(x_box,y_box,z_box)]= s_y
s_z_box[(x_box,y_box,z_box)]= s_z
# Magnitude of vector field
s_i_box = np.sqrt(s_x_box**2+s_y_box**2+s_z_box**2)
```
%% Cell type:markdown id: tags:
# 1. Plot density and momentum maps
%% Cell type:code id: tags:
``` python
# Select a slice of the data
s0_slice = s0_box[:,:,50]
s0_slice+= 1E-10 # Add a small number to visualise in log scale.
s_i_slice = s_i_box[:,:,50]
s_i_slice+= 1E-10 # Add a small number to visualise in log scale.
#Figs
fig= plt.figure(figsize=(10, 6))
gs = gridspec.GridSpec(1,2, wspace=0.5)
ax0 = plt.subplot(gs[0,0])
ax1 = plt.subplot(gs[0,1])
fig_s0 = ax0.imshow(s0_slice , origin='lower', cmap='inferno', aspect='equal',
norm=LogNorm(vmin=2E-1,vmax=1*s0_slice.max()),interpolation='None')
fig_si = ax1.imshow(s_i_slice , origin='lower', cmap='jet', aspect='equal',
norm=LogNorm(vmin=1E-10,vmax=1*s_i_slice.max()),interpolation='None')
#Colorbars
cx1 = fig.add_axes([0.45,0.25,0.02,.5])
cx2 = fig.add_axes([0.92,0.25,0.02,.5])
cb_s0 = plt.colorbar(fig_s0, cax = cx1, orientation='vertical')
cb_si = plt.colorbar(fig_si, cax = cx2, orientation='vertical')
cb_s0.ax.tick_params(labelsize=14, color='k')
cb_si.ax.tick_params(labelsize=14, color='k')
plt.show()
#fig.savefig("2D_map_s0_z-1_dpi_200.pdf",bbox_inches='tight',dpi=200)
plt.close()
```
%% Cell type:markdown id: tags:
## 1.1 Measure $P(k)$ using N-body kit
%% Cell type:code id: tags:
``` python
# Select field to measure
k_fun = 2*np.pi/box_size # fundamental mode of the box
k_Nyq = np.pi*grid_size/box_size # Nyquist mode
sim_field = s0_box
mesh_var = ArrayMesh( sim_field, Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_var = FFTPower( mesh_var, mode='1d', kmin= k_fun )
k_bins= np.array( r_var.power['k'] )
Pk_var= np.array( r_var.power['power'].real )
```
%% Cell type:code id: tags:
``` python
# CAMB z=0 matter P(k)
Pk_lin_z_0 = np.loadtxt('cmc_gauge_matterpower_z_0.dat',usecols=[1],skiprows=0,unpack=True,dtype=np.float32)[0:]
k_lin = np.loadtxt('cmc_gauge_matterpower_z_0.dat',usecols=[0],skiprows=0,unpack=True,dtype=np.float32)[0:]
```
%% Cell type:code id: tags:
``` python
# Plots
font = {'size':14}
plt.rc('font', **font)
plt.rc('font', family='serif')
plt.rc('text', usetex=True)
fig = plt.figure(figsize=(4, 5))
gs = gridspec.GridSpec(2,1, height_ratios=[4,1])
ax0 = plt.subplot(gs[0])
fig_lin= ax0.plot(k_lin,Pk_lin_z_0,'gray' , linewidth=1.0,zorder=-10, label='linear')
fig_Pk = ax0.scatter( k_bins, Pk_var, edgecolors='b', s=20,marker='.',facecolors='b',zorder=-2 )
plt.tick_params(axis='y', direction='in', which='both', labelleft='on', labelright='off', right='on')
plt.tick_params(axis='x', direction='in', which='both', labeltop='off', labelbottom='on', top='on')
ax0.set_ylabel(r'$P(k)$')
ax0.set_xlabel(r'$k$ [$h$ Mpc$^{-1}$]')
ax0.set_xscale('log')
ax0.set_yscale('log')
ax0.set_xlim( [ k_fun, 1.5*k_Nyq ] )
plt.fill_betweenx(np.array([1E-20,1E20]),k_Nyq,20 , alpha=0.2,color='red',interpolate=True)
ax0.set_ylim([1E1, 4E4])
plt.show()
#fig.savefig("Pk_gramses.pdf", bbox_inches='tight')
plt.close()
```
%% Cell type:markdown id: tags:
# 2. Vector potential
The vector mode of the shift vector is given by the linear combination below:
%% Cell type:code id: tags:
``` python
Bv_x = B_x_box -4.*dx_b_box
Bv_y = B_y_box -4.*dy_b_box
Bv_z = B_z_box -4.*dz_b_box
# Magnitude of vector field
Bv_box = np.sqrt(Bv_x**2+Bv_y**2+Bv_z**2)
```
%% Cell type:code id: tags:
``` python
# Select a slice of the data
s0_slice = s0_box[:,:,50]
s0_slice+= 1E-10 # Add a small number to visualise in log scale.
Bv_slice = Bv_box [:,:,50]
#Figs
fig= plt.figure(figsize=(10, 6))
gs = gridspec.GridSpec(1,2, wspace=0.5)
ax0 = plt.subplot(gs[0,0])
ax1 = plt.subplot(gs[0,1])
fig_s0 = ax0.imshow(s0_slice , origin='lower', cmap='inferno', aspect='equal',
norm=LogNorm(vmin=2E-1,vmax=1*s0_slice.max()),interpolation='None')
fig_Bv = ax1.imshow(Bv_slice , origin='lower', cmap='jet', aspect='equal',
norm=LogNorm(vmin=1E-10,vmax=1*Bv_slice.max()),interpolation='bicubic')
#Colorbars
cx1 = fig.add_axes([0.45,0.25,0.02,.5])
cx2 = fig.add_axes([0.92,0.25,0.02,.5])
cb_s0 = plt.colorbar(fig_s0, cax = cx1, orientation='vertical')
cb_Bv = plt.colorbar(fig_Bv, cax = cx2, orientation='vertical')
cb_s0.ax.tick_params(labelsize=14, color='k')
cb_Bv.ax.tick_params(labelsize=14, color='k')
plt.show()
#fig.savefig("2D_map_s0_z-1_dpi_200.pdf",bbox_inches='tight',dpi=200)
plt.close()
```
%% Cell type:markdown id: tags:
## 2.1 Power spectrum
%% Cell type:code id: tags:
``` python
# Measure P(k) from Bv
mesh_B_x = ArrayMesh( Bv_x, Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_B_x_Pk = FFTPower( mesh_B_x, mode='1d', kmin=2*np.pi/box_size )
k_B_x = np.array( r_B_x_Pk.power['k'] )
Pk_B_x= np.array( r_B_x_Pk.power['power'].real )
mesh_B_y = ArrayMesh( Bv_y, Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_B_y_Pk = FFTPower( mesh_B_y, mode='1d', kmin=2*np.pi/box_size )
k_B_y = np.array( r_B_y_Pk.power['k'] )
Pk_B_y= np.array( r_B_y_Pk.power['power'].real )
mesh_B_z = ArrayMesh( Bv_z, Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_B_z_Pk = FFTPower( mesh_B_z, mode='1d', kmin=2*np.pi/box_size )
k_B_z = np.array( r_B_z_Pk.power['k'] )
Pk_B_z= np.array( r_B_z_Pk.power['power'].real )
Pk_Bv = Pk_B_x+Pk_B_y+Pk_B_z
```
%% Cell type:markdown id: tags:
## 2.2 Calculate Curl: $[\nabla\times V]_i=\epsilon_{ijk}\partial_jV_k$
%% Cell type:code id: tags:
``` python
def curl_array(array_x, array_y, array_z, grid_len, box_len):
Vx1_z = np.zeros((grid_size,grid_size,grid_size))
Vx1_y = np.zeros((grid_size,grid_size,grid_size))
Vy1_z = np.zeros((grid_size,grid_size,grid_size))
Vy1_x = np.zeros((grid_size,grid_size,grid_size))
Vz1_y = np.zeros((grid_size,grid_size,grid_size))
Vz1_x = np.zeros((grid_size,grid_size,grid_size))
Vx2_z = np.zeros((grid_size,grid_size,grid_size))
Vx2_y = np.zeros((grid_size,grid_size,grid_size))
Vy2_z = np.zeros((grid_size,grid_size,grid_size))
Vy2_x = np.zeros((grid_size,grid_size,grid_size))
Vz2_y = np.zeros((grid_size,grid_size,grid_size))
Vz2_x = np.zeros((grid_size,grid_size,grid_size))
# Shifted positions & PBC
xbox1 = x_box + 1
xbox2 = x_box - 1
ybox1 = y_box + 1
ybox2 = y_box - 1
zbox1 = z_box + 1
zbox2 = z_box - 1
for i in (range(len(xbox1))):
if(xbox1[i]==grid_len): xbox1[i]=0
if(xbox2[i]==-1): xbox2[i]=grid_len-1
if(ybox1[i]==grid_len): ybox1[i]=0
if(ybox2[i]==-1): ybox2[i]=grid_len-1
if(zbox1[i]==grid_len): zbox1[i]=0
if(zbox2[i]==-1): zbox2[i]=grid_len-1
# Define nodes for FD:
Vx1_z[(x_box,y_box,zbox1)] = array_x
Vx1_y[(x_box,ybox1,z_box)] = array_x
Vy1_z[(x_box,y_box,zbox1)] = array_y
Vy1_x[(xbox1,y_box,z_box)] = array_y
Vz1_y[(x_box,ybox1,z_box)] = array_z
Vz1_x[(xbox1,y_box,z_box)] = array_z
Vx2_z[(x_box,y_box,zbox2)] = array_x
Vx2_y[(x_box,ybox2,z_box)] = array_x
Vy2_z[(x_box,y_box,zbox2)] = array_y
Vy2_x[(xbox2,y_box,z_box)] = array_y
Vz2_y[(x_box,ybox2,z_box)] = array_z
Vz2_x[(xbox2,y_box,z_box)] = array_z
# Calculate FD using shifted arrays
dx = box_len/float(grid_size)
curl_V_x= ((Vz1_y-Vz2_y)-(Vy1_z-Vy2_z))/(2*dx)
curl_V_y= ((Vx1_z-Vx2_z)-(Vz1_x-Vz2_x))/(2*dx)
curl_V_z= ((Vy1_x-Vy2_x)-(Vx1_y-Vx2_y))/(2*dx)
return [curl_V_x,curl_V_y,curl_V_z]
```
%% Cell type:code id: tags:
``` python
curl_B = curl_array(B_x, B_y, B_z, grid_size, box_size )
# curl of momentum field s_i
curl_s = curl_array(s_x, s_y, s_z, grid_size, box_size )
```
%% Cell type:code id: tags:
``` python
# Measure Power spectra of curls
mesh_cB_x = ArrayMesh( curl_B[0], Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_cB_x_Pk = FFTPower( mesh_cB_x, mode='1d', kmin=2*np.pi/box_size )
k_cB_x = np.array( r_cB_x_Pk.power['k'] )
Pk_cB_x= np.array( r_cB_x_Pk.power['power'].real )
mesh_cB_y = ArrayMesh( curl_B[1], Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_cB_y_Pk = FFTPower( mesh_cB_y, mode='1d', kmin=2*np.pi/box_size )
k_cB_y = np.array( r_cB_y_Pk.power['k'] )
Pk_cB_y= np.array( r_cB_y_Pk.power['power'].real )
mesh_cB_z = ArrayMesh( curl_B[2], Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_cB_z_Pk = FFTPower( mesh_cB_z, mode='1d', kmin=2*np.pi/box_size )
k_cB_z = np.array( r_cB_z_Pk.power['k'] )
Pk_cB_z= np.array( r_cB_z_Pk.power['power'].real )
# Spectrum from curl
Pk_cBB = Pk_cB_x+Pk_cB_y+Pk_cB_z
Pk_BB = Pk_cBB/k_cB_x**2
k_cB = k_cB_x
# Curl of density field
mesh_cs_x = ArrayMesh( curl_s[0], Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_cs_x_Pk = FFTPower( mesh_cs_x, mode='1d', kmin=2*np.pi/box_size )
k_cs_x = np.array( r_cs_x_Pk.power['k'] )
Pk_cs_x= np.array( r_cs_x_Pk.power['power'].real )
mesh_cs_y = ArrayMesh( curl_s[1], Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_cs_y_Pk = FFTPower( mesh_cs_y, mode='1d', kmin=2*np.pi/box_size )
k_cs_y = np.array( r_cs_y_Pk.power['k'] )
Pk_cs_y= np.array( r_cs_y_Pk.power['power'].real )
mesh_cs_z = ArrayMesh( curl_s[2], Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_cs_z_Pk = FFTPower( mesh_cs_z, mode='1d', kmin=2*np.pi/box_size )
k_cs_z = np.array( r_cs_z_Pk.power['k'] )
Pk_cs_z= np.array( r_cs_z_Pk.power['power'].real )
# Spectrum from curl
Pk_csi= Pk_cs_x+Pk_cs_y+Pk_cs_z
Pk_si = Pk_csi/k_cs_x**2
k_cs = k_cs_x
```
%% Cell type:markdown id: tags:
## Plot all the vector modes $P(k)$
%% Cell type:code id: tags:
``` python
# Plots
font = {'size':14}
plt.rc('font', **font)
plt.rc('font', family='serif')
plt.rc('text', usetex=True)
fig = plt.figure(figsize=(4, 5))
gs = gridspec.GridSpec(2,1, height_ratios=[4,1])
ax0 = plt.subplot(gs[0])
fig_Pk = ax0.scatter( k_B_x, k_B_x**3*Pk_Bv/(2*np.pi**2)
, edgecolors='b', s=20,marker='.',facecolors='b',zorder=-2 )
fig_Pk = ax0.scatter( k_cB , k_cB**3*Pk_BB*1/(2*np.pi**2)
, edgecolors='r', s=20,marker='.',facecolors='r',zorder=-2 )
fig_Pk = ax0.scatter( k_cs , k_cs**3*Pk_si/k_cs**4/(2*np.pi**2)
, edgecolors='gray', s=20,marker='.',facecolors='gray',zorder=-2 )
plt.tick_params(axis='y', direction='in', which='both', labelleft='on', labelright='off', right='on')
plt.tick_params(axis='x', direction='in', which='both', labeltop='off', labelbottom='on', top='on')
ax0.set_ylabel(r'$k^3P(k)/(2\pi^2)$')
ax0.set_xlabel(r'$k$ [$h$ Mpc$^{-1}$]')
ax0.set_xscale('log')
ax0.set_yscale('log')
ax0.set_xlim( [ k_fun, 1.5*k_Nyq ] )
ax0.set_ylim([1E-20, 1E-15])
plt.fill_betweenx(np.array([1E-20,1E-10]),k_Nyq, 20, alpha=0.2,color='red',interpolate=True)
plt.show()
#fig.savefig("Pk_gramses.pdf", bbox_inches='tight')
plt.close()
```
%% Cell type:markdown id: tags:
# 3. Gravitational slip: $\chi=\vert \Phi-\Psi \vert$
%% Cell type:code id: tags:
``` python
# Define nonlinear scalar perturbations
# Conformal factor perturbation
Psi = gr_pot[0]/(a_out*ctilde)**2/2
# Lapse function perturbation
lapse = 1. + gr_pot[1]/(a_out*ctilde)**2/(1. - Psi)
Phi = 0.5*(lapse**2-1.)
# Define gravitational slip
chi = np.abs(Phi - Psi)
# Map to box
chi_box = np.zeros((grid_size,grid_size,grid_size))
chi_box[(x_box,y_box,z_box)] = chi
print(Phi.max(),Phi.min())
print(Psi.max(),Psi.min())
print(chi.max(),chi.min(),np.mean((chi)) )
```
%% Cell type:code id: tags:
``` python
# Select a slice of the data
s0_slice = s0_box[:,:,50]
s0_slice+= 1E-10 # Add a small number to visualise in log scale.
chi_slice= chi_box[:,:,50]
#Figs
fig= plt.figure(figsize=(10, 6))
gs = gridspec.GridSpec(1,2, wspace=0.5)
ax0 = plt.subplot(gs[0,0])
ax1 = plt.subplot(gs[0,1])
fig_s0 = ax0.imshow(s0_slice , origin='lower', cmap='inferno', aspect='equal',
norm=LogNorm(vmin=2E-1,vmax=1*s0_slice.max()),interpolation='None')
fig_chi= ax1.imshow(chi_slice , origin='lower', cmap='jet', aspect='equal',
norm=LogNorm(vmin=1E-7,vmax=1*chi_slice.max()),interpolation='bicubic')
#Colorbars
cx1 = fig.add_axes([0.45,0.25,0.02,.5])
cx2 = fig.add_axes([0.92,0.25,0.02,.5])
cb_s0= plt.colorbar(fig_s0, cax = cx1, orientation='vertical')
cb_Bv = plt.colorbar(fig_chi, cax = cx2, orientation='vertical')
cb_s0.ax.tick_params(labelsize=14, color='k')
cb_Bv.ax.tick_params(labelsize=14, color='k')
plt.show()
#fig.savefig("2D_map_s0_z-1_dpi_200.pdf",bbox_inches='tight',dpi=200)
plt.close()
```
%% Cell type:code id: tags:
``` python
# Measure spectrum
mesh_chi = ArrayMesh( chi_box, Nmesh=grid_size, compensated=False, BoxSize=box_size )
r_chi = FFTPower( mesh_chi, mode='1d', kmin= k_fun )
k_bins= np.array( r_chi.power['k'] )
Pk_chi= np.array( r_chi.power['power'].real )
```
%% Cell type:code id: tags:
``` python
# Plots
font = {'size':14}
plt.rc('font', **font)
plt.rc('font', family='serif')
plt.rc('text', usetex=True)
fig = plt.figure(figsize=(4, 5))
gs = gridspec.GridSpec(2,1, height_ratios=[4,1])
ax0 = plt.subplot(gs[0])
fig_Pk = ax0.scatter( k_bins, Pk_chi, edgecolors='b', s=20,marker='.',facecolors='b',zorder=-2 )
plt.tick_params(axis='y', direction='in', which='both', labelleft='on', labelright='off', right='on')
plt.tick_params(axis='x', direction='in', which='both', labeltop='off', labelbottom='on', top='on')
ax0.set_ylabel(r'$P(k)$')
ax0.set_xlabel(r'$k$ [$h$ Mpc$^{-1}$]')
ax0.set_xscale('log')
ax0.set_yscale('log')
ax0.set_xlim( [ k_fun, 1.5*k_Nyq ] )
plt.fill_betweenx(np.array([1E-15,1E1]),k_Nyq,20 , alpha=0.2,color='red',interpolate=True)
ax0.set_ylim([1E-15, 1E-4])
plt.show()
#fig.savefig("Pk_gramses.pdf", bbox_inches='tight')
plt.close()
```
# k/h P
0.100000E-03 0.495744E+06
0.102020E-03 0.467647E+06
0.104081E-03 0.441188E+06
0.106184E-03 0.416272E+06
0.108329E-03 0.392807E+06
0.110517E-03 0.370708E+06
0.112750E-03 0.349895E+06
0.115027E-03 0.330290E+06
0.117351E-03 0.311824E+06
0.119722E-03 0.294430E+06
0.122140E-03 0.278043E+06
0.124608E-03 0.262604E+06
0.127125E-03 0.248059E+06
0.129693E-03 0.234353E+06
0.132313E-03 0.221438E+06
0.134986E-03 0.209266E+06
0.137713E-03 0.197795E+06
0.140495E-03 0.186983E+06
0.143333E-03 0.176791E+06
0.146228E-03 0.167183E+06
0.149182E-03 0.158125E+06
0.152196E-03 0.149586E+06
0.155271E-03 0.141535E+06
0.158407E-03 0.133944E+06
0.161607E-03 0.126787E+06
0.164872E-03 0.120039E+06
0.168203E-03 0.113675E+06
0.171601E-03 0.107674E+06
0.175067E-03 0.102015E+06
0.178604E-03 0.966773E+05
0.182212E-03 0.916425E+05
0.185893E-03 0.868932E+05
0.189648E-03 0.824126E+05
0.193479E-03 0.781851E+05
0.197388E-03 0.741961E+05
0.201375E-03 0.704318E+05
0.205443E-03 0.668790E+05
0.209594E-03 0.635258E+05
0.213828E-03 0.603607E+05
0.218147E-03 0.573729E+05
0.222554E-03 0.545523E+05
0.227050E-03 0.518893E+05
0.231637E-03 0.493749E+05
0.236316E-03 0.470005E+05
0.241090E-03 0.447582E+05
0.245960E-03 0.426402E+05
0.250929E-03 0.406397E+05
0.255998E-03 0.387497E+05
0.261170E-03 0.369640E+05
0.266446E-03 0.352766E+05
0.271828E-03 0.336820E+05
0.277319E-03 0.321748E+05
0.282922E-03 0.307500E+05
0.288637E-03 0.294031E+05
0.294468E-03 0.281296E+05
0.300417E-03 0.269253E+05
0.306485E-03 0.257865E+05
0.312677E-03 0.247094E+05
0.318993E-03 0.236906E+05
0.325437E-03 0.227268E+05
0.332012E-03 0.218150E+05
0.338719E-03 0.209523E+05
0.345561E-03 0.201360E+05
0.352542E-03 0.193636E+05
0.359664E-03 0.186326E+05
0.366930E-03 0.179408E+05
0.374342E-03 0.172861E+05
0.381904E-03 0.166664E+05
0.389619E-03 0.160800E+05
0.397490E-03 0.155249E+05
0.405520E-03 0.149996E+05
0.413712E-03 0.145022E+05
0.422070E-03 0.140314E+05
0.430596E-03 0.135857E+05
0.439295E-03 0.131637E+05
0.448169E-03 0.127642E+05
0.457222E-03 0.123861E+05
0.466459E-03 0.120281E+05
0.475882E-03 0.116892E+05
0.485496E-03 0.113686E+05
0.495303E-03 0.110652E+05
0.505309E-03 0.107783E+05
0.515517E-03 0.105070E+05
0.525931E-03 0.102506E+05
0.536556E-03 0.100084E+05
0.547395E-03 0.977977E+04
0.558453E-03 0.956402E+04
0.569734E-03 0.936050E+04
0.581244E-03 0.916860E+04
0.592986E-03 0.898774E+04
0.604965E-03 0.881738E+04
0.617186E-03 0.865702E+04
0.629654E-03 0.850620E+04
0.642374E-03 0.836449E+04
0.655350E-03 0.823147E+04
0.668589E-03 0.810679E+04
0.682096E-03 0.799008E+04
0.695875E-03 0.788102E+04
0.709933E-03 0.777932E+04
0.724274E-03 0.768470E+04
0.738906E-03 0.759689E+04
0.753832E-03 0.751566E+04
0.769061E-03 0.744079E+04
0.784597E-03 0.737204E+04
0.800447E-03 0.730915E+04
0.816617E-03 0.725191E+04
0.833114E-03 0.720011E+04
0.849944E-03 0.715355E+04
0.867114E-03 0.711205E+04
0.884631E-03 0.707544E+04
0.902501E-03 0.704356E+04
0.920733E-03 0.701628E+04
0.939333E-03 0.699345E+04
0.958309E-03 0.697494E+04
0.977668E-03 0.696065E+04
0.997418E-03 0.695046E+04
0.101757E-02 0.694427E+04
0.103812E-02 0.694200E+04
0.105910E-02 0.694355E+04
0.108049E-02 0.694884E+04
0.110232E-02 0.695780E+04
0.112459E-02 0.697035E+04
0.114730E-02 0.698641E+04
0.117048E-02 0.700593E+04
0.119413E-02 0.702884E+04
0.121825E-02 0.705508E+04
0.124286E-02 0.708460E+04
0.126797E-02 0.711735E+04
0.129358E-02 0.715328E+04
0.131971E-02 0.719235E+04
0.134637E-02 0.723451E+04
0.137357E-02 0.727972E+04
0.140132E-02 0.732793E+04
0.142963E-02 0.737912E+04
0.145851E-02 0.743325E+04
0.148797E-02 0.749027E+04
0.151803E-02 0.755016E+04
0.154870E-02 0.761291E+04
0.157998E-02 0.767849E+04
0.161190E-02 0.774691E+04
0.164446E-02 0.781813E+04
0.167768E-02 0.789216E+04
0.171158E-02 0.796898E+04
0.174615E-02 0.804858E+04
0.178143E-02 0.813094E+04
0.181741E-02 0.821604E+04
0.185413E-02 0.830389E+04
0.189158E-02 0.839445E+04
0.192980E-02 0.848771E+04
0.196878E-02 0.858366E+04
0.200855E-02 0.868228E+04
0.204913E-02 0.878354E+04
0.209052E-02 0.888742E+04
0.213276E-02 0.899391E+04
0.217584E-02 0.910303E+04
0.221979E-02 0.921476E+04
0.226464E-02 0.932911E+04
0.231039E-02 0.944608E+04
0.235706E-02 0.956566E+04
0.240467E-02 0.968785E+04
0.245325E-02 0.981263E+04
0.250281E-02 0.994001E+04
0.255337E-02 0.100700E+05
0.260495E-02 0.102025E+05
0.265758E-02 0.103376E+05
0.271126E-02 0.104752E+05
0.276603E-02 0.106154E+05
0.282191E-02 0.107580E+05
0.287892E-02 0.109031E+05
0.293708E-02 0.110507E+05
0.299641E-02 0.112007E+05
0.305694E-02 0.113531E+05
0.311870E-02 0.115079E+05
0.318170E-02 0.116651E+05
0.324597E-02 0.118247E+05
0.331155E-02 0.119867E+05
0.337844E-02 0.121510E+05
0.344669E-02 0.123176E+05
0.351632E-02 0.124866E+05
0.358735E-02 0.126577E+05
0.365982E-02 0.128311E+05
0.373376E-02 0.130067E+05
0.380918E-02 0.131845E+05
0.388613E-02 0.133643E+05
0.396464E-02 0.135462E+05
0.404473E-02 0.137302E+05
0.412644E-02 0.139161E+05
0.420980E-02 0.141039E+05
0.429484E-02 0.142936E+05
0.438160E-02 0.144852E+05
0.447012E-02 0.146785E+05
0.456042E-02 0.148736E+05
0.465255E-02 0.150704E+05
0.474653E-02 0.152687E+05
0.484242E-02 0.154686E+05
0.494024E-02 0.156699E+05
0.504004E-02 0.158727E+05
0.514186E-02 0.160767E+05
0.524573E-02 0.162820E+05
0.535170E-02 0.164885E+05
0.545981E-02 0.166960E+05
0.557011E-02 0.169045E+05
0.568263E-02 0.171139E+05
0.579743E-02 0.173241E+05
0.591455E-02 0.175350E+05
0.603403E-02 0.177465E+05
0.615592E-02 0.179585E+05
0.628028E-02 0.181708E+05
0.640715E-02 0.183833E+05
0.653658E-02 0.185960E+05
0.666863E-02 0.188087E+05
0.680335E-02 0.190213E+05
0.694078E-02 0.192336E+05
0.708100E-02 0.194455E+05
0.722404E-02 0.196568E+05
0.736998E-02 0.198674E+05
0.751886E-02 0.200772E+05
0.767075E-02 0.202860E+05
0.782571E-02 0.204936E+05
0.798380E-02 0.206998E+05
0.814509E-02 0.209045E+05
0.830963E-02 0.211075E+05
0.847750E-02 0.213086E+05
0.864875E-02 0.215077E+05
0.882347E-02 0.217044E+05
0.900171E-02 0.218987E+05
0.918356E-02 0.220904E+05
0.936908E-02 0.222791E+05
0.955835E-02 0.224647E+05
0.975144E-02 0.226470E+05
0.994843E-02 0.228257E+05
0.101494E-01 0.230007E+05
0.103544E-01 0.231716E+05
0.105636E-01 0.233383E+05
0.107770E-01 0.235005E+05
0.109947E-01 0.236579E+05
0.112168E-01 0.238103E+05
0.114434E-01 0.239574E+05
0.116746E-01 0.240990E+05
0.119104E-01 0.242348E+05
0.121510E-01 0.243645E+05
0.123965E-01 0.244879E+05
0.126469E-01 0.246046E+05
0.129024E-01 0.247145E+05
0.131631E-01 0.248171E+05
0.134290E-01 0.249124E+05
0.137003E-01 0.249999E+05
0.139770E-01 0.250793E+05
0.142594E-01 0.251505E+05
0.145474E-01 0.252131E+05
0.148413E-01 0.252668E+05
0.151411E-01 0.253115E+05
0.154470E-01 0.253467E+05
0.157590E-01 0.253723E+05
0.160774E-01 0.253880E+05
0.164022E-01 0.253935E+05
0.167335E-01 0.253886E+05
0.170716E-01 0.253731E+05
0.174164E-01 0.253467E+05
0.177683E-01 0.253093E+05
0.181272E-01 0.252606E+05
0.184934E-01 0.252005E+05
0.188670E-01 0.251289E+05
0.192481E-01 0.250455E+05
0.196370E-01 0.249504E+05
0.200337E-01 0.248433E+05
0.204384E-01 0.247242E+05
0.208513E-01 0.245931E+05
0.212725E-01 0.244499E+05
0.217022E-01 0.242948E+05
0.221406E-01 0.241276E+05
0.225879E-01 0.239486E+05
0.230442E-01 0.237579E+05
0.235097E-01 0.235555E+05
0.239847E-01 0.233418E+05
0.244692E-01 0.231169E+05
0.249635E-01 0.228812E+05
0.254678E-01 0.226349E+05
0.259823E-01 0.223784E+05
0.265072E-01 0.221122E+05
0.270426E-01 0.218367E+05
0.275889E-01 0.215525E+05
0.281463E-01 0.212601E+05
0.287149E-01 0.209601E+05
0.292949E-01 0.206531E+05
0.298867E-01 0.203399E+05
0.304905E-01 0.200212E+05
0.311064E-01 0.196978E+05
0.317348E-01 0.193705E+05
0.323759E-01 0.190401E+05
0.330299E-01 0.187075E+05
0.336972E-01 0.183736E+05
0.343779E-01 0.180393E+05
0.350724E-01 0.177057E+05
0.357809E-01 0.173737E+05
0.365038E-01 0.170431E+05
0.372412E-01 0.167137E+05
0.379935E-01 0.163869E+05
0.387610E-01 0.160645E+05
0.395440E-01 0.157482E+05
0.403429E-01 0.154389E+05
0.411579E-01 0.151375E+05
0.419893E-01 0.148447E+05
0.428375E-01 0.145613E+05
0.437029E-01 0.142878E+05
0.445858E-01 0.140245E+05
0.454865E-01 0.137718E+05
0.464053E-01 0.135295E+05
0.473428E-01 0.132977E+05
0.482992E-01 0.130761E+05
0.492749E-01 0.128641E+05
0.502703E-01 0.126615E+05
0.512858E-01 0.124674E+05
0.523219E-01 0.122812E+05
0.533789E-01 0.121023E+05
0.544572E-01 0.119299E+05
0.555573E-01 0.117633E+05
0.566796E-01 0.116017E+05
0.578246E-01 0.114479E+05
0.589927E-01 0.113040E+05
0.601845E-01 0.111630E+05
0.614003E-01 0.110170E+05
0.626407E-01 0.108651E+05
0.639061E-01 0.107097E+05
0.651971E-01 0.105506E+05
0.665142E-01 0.103850E+05
0.678578E-01 0.102112E+05
0.692287E-01 0.100281E+05
0.706272E-01 0.983478E+04
0.720539E-01 0.963055E+04
0.735095E-01 0.941505E+04
0.749945E-01 0.918842E+04
0.765095E-01 0.895125E+04
0.780551E-01 0.870447E+04
0.796319E-01 0.844946E+04
0.812406E-01 0.818789E+04
0.828817E-01 0.792172E+04
0.845561E-01 0.765309E+04
0.862642E-01 0.738430E+04
0.880068E-01 0.711775E+04
0.897847E-01 0.685590E+04
0.915985E-01 0.660126E+04
0.934489E-01 0.635629E+04
0.953367E-01 0.612332E+04
0.972626E-01 0.590445E+04
0.992274E-01 0.570141E+04
0.101232E+00 0.551539E+04
0.103277E+00 0.534698E+04
0.105363E+00 0.519605E+04
0.107492E+00 0.506182E+04
0.109663E+00 0.494290E+04
0.111879E+00 0.483737E+04
0.114139E+00 0.474291E+04
0.116445E+00 0.465683E+04
0.118797E+00 0.457608E+04
0.121197E+00 0.449733E+04
0.123645E+00 0.441699E+04
0.126143E+00 0.433146E+04
0.128691E+00 0.423748E+04
0.131291E+00 0.413263E+04
0.133943E+00 0.401572E+04
0.136649E+00 0.388710E+04
0.139409E+00 0.374848E+04
0.142226E+00 0.360265E+04
0.145099E+00 0.345290E+04
0.148030E+00 0.330267E+04
0.151020E+00 0.315528E+04
0.154071E+00 0.301400E+04
0.157184E+00 0.288201E+04
0.160359E+00 0.276214E+04
0.163598E+00 0.265646E+04
0.166903E+00 0.256570E+04
0.170275E+00 0.248900E+04
0.173715E+00 0.242401E+04
0.177224E+00 0.236742E+04
0.180804E+00 0.231551E+04
0.184457E+00 0.226468E+04
0.188183E+00 0.221159E+04
0.191985E+00 0.215342E+04
0.195863E+00 0.208825E+04
0.199820E+00 0.201547E+04
0.203856E+00 0.193610E+04
0.207974E+00 0.185255E+04
0.212176E+00 0.176810E+04
0.216462E+00 0.168620E+04
0.220835E+00 0.160999E+04
0.225296E+00 0.154184E+04
0.229847E+00 0.148293E+04
0.234490E+00 0.143276E+04
0.239227E+00 0.138982E+04
0.244060E+00 0.135114E+04
0.248990E+00 0.131382E+04
0.254020E+00 0.127514E+04
0.259152E+00 0.123331E+04
0.264387E+00 0.118772E+04
0.269728E+00 0.113899E+04
0.275177E+00 0.108902E+04
0.280736E+00 0.104004E+04
0.286407E+00 0.994506E+03
0.292193E+00 0.953689E+03
0.298096E+00 0.917754E+03
0.304118E+00 0.885937E+03
0.310261E+00 0.856706E+03
0.316529E+00 0.828334E+03
0.322923E+00 0.799056E+03
0.329447E+00 0.768318E+03
0.336102E+00 0.736522E+03
0.342892E+00 0.704753E+03
0.349819E+00 0.674412E+03
0.356885E+00 0.646350E+03
0.364095E+00 0.620972E+03
0.371450E+00 0.597761E+03
0.378954E+00 0.575753E+03
0.386609E+00 0.554105E+03
0.394419E+00 0.532177E+03
0.402387E+00 0.510140E+03
0.410516E+00 0.488510E+03
0.418809E+00 0.467881E+03
0.427269E+00 0.448724E+03
0.435901E+00 0.430857E+03
0.444706E+00 0.413884E+03
0.453690E+00 0.397390E+03
0.462855E+00 0.381072E+03
0.472206E+00 0.365086E+03
0.481745E+00 0.349682E+03
0.491477E+00 0.335042E+03
0.501405E+00 0.321244E+03
0.511534E+00 0.308076E+03
0.521868E+00 0.295329E+03
0.532411E+00 0.282952E+03
0.543166E+00 0.270959E+03
0.554139E+00 0.259463E+03
0.565333E+00 0.248529E+03
0.576753E+00 0.238073E+03
0.588404E+00 0.228013E+03
0.600291E+00 0.218314E+03
0.612418E+00 0.208969E+03
0.624789E+00 0.200013E+03
0.637411E+00 0.191456E+03
0.650288E+00 0.183257E+03
0.663424E+00 0.175386E+03
0.676826E+00 0.167829E+03
0.690499E+00 0.160577E+03
0.704448E+00 0.153618E+03
0.718679E+00 0.146943E+03
0.733197E+00 0.140541E+03
0.748009E+00 0.134403E+03
0.763119E+00 0.128520E+03
0.778536E+00 0.122882E+03
0.794263E+00 0.117480E+03
0.810308E+00 0.112306E+03
0.826677E+00 0.107350E+03
0.843378E+00 0.102604E+03
0.860415E+00 0.980600E+02
0.877797E+00 0.937089E+02
0.895529E+00 0.895431E+02
0.913620E+00 0.855551E+02
0.932076E+00 0.817376E+02
0.950906E+00 0.780836E+02
0.970115E+00 0.745865E+02
0.989713E+00 0.712396E+02
0.100971E+01 0.680370E+02
0.103010E+01 0.649726E+02
0.105091E+01 0.620408E+02
0.107214E+01 0.592362E+02
0.109380E+01 0.565535E+02
0.111590E+01 0.539878E+02
0.113844E+01 0.515341E+02
0.116144E+01 0.491880E+02
0.118490E+01 0.469448E+02
0.120884E+01 0.448003E+02
0.123326E+01 0.427504E+02
0.125817E+01 0.407911E+02
0.128359E+01 0.389186E+02
0.130952E+01 0.371293E+02
0.133597E+01 0.354195E+02
0.136296E+01 0.337859E+02
0.139049E+01 0.322252E+02
0.141858E+01 0.307344E+02
0.144724E+01 0.293103E+02
0.147648E+01 0.279503E+02
0.150630E+01 0.266514E+02
0.153673E+01 0.254111E+02
0.156778E+01 0.242268E+02
0.159945E+01 0.230960E+02
0.163176E+01 0.220165E+02
0.166472E+01 0.209861E+02
0.169835E+01 0.200025E+02
0.173266E+01 0.190637E+02
0.176766E+01 0.181677E+02
0.180337E+01 0.173127E+02
0.183980E+01 0.164968E+02
0.187697E+01 0.157184E+02
0.191489E+01 0.149757E+02
0.195357E+01 0.142672E+02
0.199304E+01 0.135914E+02
0.203330E+01 0.129467E+02
0.207437E+01 0.123319E+02
0.211628E+01 0.117455E+02
0.215903E+01 0.111863E+02
0.220265E+01 0.106531E+02
0.224714E+01 0.101447E+02
0.229254E+01 0.965994E+01
0.233885E+01 0.919783E+01
0.238610E+01 0.875730E+01
0.243430E+01 0.833739E+01
0.248348E+01 0.793715E+01
0.253365E+01 0.755570E+01
0.258483E+01 0.719217E+01
0.263705E+01 0.684574E+01
0.269032E+01 0.651563E+01
0.274466E+01 0.620110E+01
0.280011E+01 0.590143E+01
0.285668E+01 0.561593E+01
0.291439E+01 0.534396E+01
0.297326E+01 0.508488E+01
0.303332E+01 0.483811E+01
0.309460E+01 0.460307E+01
0.315712E+01 0.437922E+01
0.322090E+01 0.416604E+01
0.328596E+01 0.396303E+01
0.335234E+01 0.376973E+01
0.342006E+01 0.358567E+01
0.348916E+01 0.341043E+01
0.355964E+01 0.324359E+01
0.363155E+01 0.308476E+01
0.370491E+01 0.293356E+01
0.377976E+01 0.278964E+01
0.385611E+01 0.265265E+01
0.393401E+01 0.252226E+01
0.401348E+01 0.239818E+01
0.409456E+01 0.228008E+01
0.417727E+01 0.216771E+01
0.426166E+01 0.206077E+01
0.434775E+01 0.195902E+01
0.443558E+01 0.186221E+01
0.452519E+01 0.177011E+01
0.461660E+01 0.168248E+01
0.470987E+01 0.159912E+01
0.480501E+01 0.151983E+01
0.490208E+01 0.144440E+01
0.500111E+01 0.137266E+01
0.510214E+01 0.130442E+01
0.520521E+01 0.123952E+01
0.531036E+01 0.117780E+01
0.541763E+01 0.111911E+01
0.552708E+01 0.106330E+01
0.563873E+01 0.101023E+01
0.575264E+01 0.959765E+00
0.586885E+01 0.911787E+00
0.598741E+01 0.866172E+00
0.610836E+01 0.822806E+00
0.623176E+01 0.781580E+00
0.635765E+01 0.742390E+00
0.648609E+01 0.705137E+00
0.661711E+01 0.669728E+00
0.675079E+01 0.636072E+00
0.688716E+01 0.604083E+00
0.702629E+01 0.573682E+00
0.716823E+01 0.544790E+00
0.731304E+01 0.517334E+00
0.746077E+01 0.491243E+00
0.761149E+01 0.466451E+00
0.776525E+01 0.442893E+00
0.792212E+01 0.420510E+00
0.808217E+01 0.399244E+00
0.824543E+01 0.379039E+00
0.841200E+01 0.359844E+00
0.858193E+01 0.341609E+00
0.875530E+01 0.324287E+00
0.893217E+01 0.307832E+00
0.911261E+01 0.292202E+00
0.929670E+01 0.277356E+00
0.948451E+01 0.263255E+00
0.967610E+01 0.249863E+00
0.987158E+01 0.237144E+00
0.100710E+02 0.225064E+00
0.102744E+02 0.213593E+00
0.104820E+02 0.202700E+00
0.106938E+02 0.192356E+00
0.109098E+02 0.182534E+00
0.111302E+02 0.173208E+00
0.113550E+02 0.164353E+00
0.115844E+02 0.155946E+00
0.118184E+02 0.147964E+00
0.120572E+02 0.140386E+00
0.123007E+02 0.133192E+00
0.125492E+02 0.126363E+00
0.128027E+02 0.119880E+00
0.130614E+02 0.113727E+00
0.133252E+02 0.107886E+00
0.135944E+02 0.102341E+00
0.138691E+02 0.970791E-01
0.141492E+02 0.920846E-01
0.144351E+02 0.873445E-01
0.147267E+02 0.828460E-01
0.150242E+02 0.785768E-01
0.153277E+02 0.745254E-01
0.156373E+02 0.706809E-01
0.159532E+02 0.670327E-01
0.162755E+02 0.635710E-01
0.166043E+02 0.602863E-01
0.169397E+02 0.571698E-01
0.172819E+02 0.542128E-01
0.176310E+02 0.514073E-01
0.179872E+02 0.487456E-01
0.183505E+02 0.462204E-01
0.187212E+02 0.438249E-01
0.190994E+02 0.415523E-01
0.194853E+02 0.393966E-01
0.198789E+02 0.373516E-01
0.202805E+02 0.354118E-01
0.206902E+02 0.335719E-01
0.211081E+02 0.318267E-01
0.215346E+02 0.301714E-01
0.219696E+02 0.286015E-01
0.224134E+02 0.271125E-01
0.228662E+02 0.257004E-01
0.233281E+02 0.243611E-01
0.237994E+02 0.230911E-01
0.242802E+02 0.218867E-01
0.247707E+02 0.207445E-01
0.252710E+02 0.196615E-01
0.257816E+02 0.186345E-01
0.263024E+02 0.176608E-01
0.268337E+02 0.167374E-01
0.273758E+02 0.158620E-01
0.279288E+02 0.150319E-01
0.284930E+02 0.142450E-01
0.290686E+02 0.134989E-01
0.296558E+02 0.127915E-01
0.302549E+02 0.121209E-01
0.308661E+02 0.114852E-01
0.314897E+02 0.108825E-01
0.321258E+02 0.103112E-01
0.327748E+02 0.976971E-02
0.334369E+02 0.925637E-02
0.341123E+02 0.876980E-02
0.348014E+02 0.830859E-02
0.355045E+02 0.787145E-02
0.362217E+02 0.745712E-02
0.369535E+02 0.706442E-02
0.377000E+02 0.669224E-02
0.384616E+02 0.633951E-02
0.392386E+02 0.600522E-02
0.400312E+02 0.568842E-02
0.408399E+02 0.538820E-02
0.416649E+02 0.510370E-02
0.425066E+02 0.483410E-02
0.433653E+02 0.457863E-02
0.442413E+02 0.433655E-02
0.451350E+02 0.410717E-02
0.460469E+02 0.388983E-02
0.469770E+02 0.368390E-02
0.479261E+02 0.348878E-02
0.488942E+02 0.330390E-02
0.498820E+02 0.312875E-02
0.508896E+02 0.296280E-02
0.519177E+02 0.280559E-02
0.529665E+02 0.265664E-02
0.540365E+02 0.251554E-02
0.551281E+02 0.238187E-02
0.562417E+02 0.225524E-02
0.573779E+02 0.213528E-02
0.585370E+02 0.202166E-02
0.597195E+02 0.191403E-02
0.609260E+02 0.181208E-02
0.621568E+02 0.171552E-02
0.634124E+02 0.162406E-02
0.646934E+02 0.153744E-02
0.660003E+02 0.145540E-02
0.673336E+02 0.137770E-02
0.686938E+02 0.130412E-02
0.700816E+02 0.123443E-02
0.714973E+02 0.116843E-02
0.729416E+02 0.110593E-02
0.744151E+02 0.104674E-02
0.759184E+02 0.990688E-03
0.774521E+02 0.937601E-03
0.790167E+02 0.887326E-03
0.806129E+02 0.839714E-03
0.822415E+02 0.794626E-03
0.839028E+02 0.751927E-03
0.855978E+02 0.711493E-03
0.873269E+02 0.673205E-03
0.890911E+02 0.636955E-03
0.908908E+02 0.602638E-03
0.927270E+02 0.570153E-03
0.946001E+02 0.539406E-03
0.965112E+02 0.510306E-03
0.984608E+02 0.482769E-03
0.100450E+03 0.456712E-03
0.102479E+03 0.432057E-03
0.104549E+03 0.408731E-03
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment